This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355781 #22 Nov 16 2022 08:53:16 %S A355781 1,2,14,166,2854,64854,1839622,62688406,2497159302,113932356630, %T A355781 5860555367814,335639363668118,21184456464757894,1461163816568091926, %U A355781 109351697864286862214,8825909581376322510230,764231343305480319046278,70670539764733828998689302 %N A355781 E.g.f. satisfies log(A(x)) = 2 * (exp(x) - 1) * A(x). %H A355781 Alois P. Heinz, <a href="/A355781/b355781.txt">Table of n, a(n) for n = 0..347</a> %F A355781 E.g.f.: exp( -LambertW(2 * (1 - exp(x))) ). %F A355781 a(n) = Sum_{k=0..n} 2^k * (k+1)^(k-1) * Stirling2(n,k). %F A355781 From _Vaclav Kotesovec_, Jul 18 2022: (Start) %F A355781 E.g.f.: LambertW(2 * (1 - exp(x))) / (2 * (1 - exp(x))). %F A355781 a(n) ~ sqrt(2*exp(1) + 1) * sqrt(log(1 + exp(-1)/2)) * n^(n-1) / (exp(n-1) * (log(exp(1) + 1/2) - 1)^n). (End) %p A355781 b:= proc(n, m) option remember; `if`(n=0, %p A355781 2^m*(m+1)^(m-1), m*b(n-1, m)+b(n-1, m+1)) %p A355781 end: %p A355781 a:= n-> b(n, 0): %p A355781 seq(a(n), n=0..21); # _Alois P. Heinz_, Jul 29 2022 %t A355781 b[n_, m_] := b[n, m] = If[n == 0, 2^m*(m + 1)^(m - 1), m*b[n - 1, m] + b[n - 1, m + 1]]; %t A355781 a[n_] := b[n, 0]; %t A355781 Table[a[n], {n, 0, 21}] (* _Jean-François Alcover_, Nov 16 2022, after _Alois P. Heinz_ *) %o A355781 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(2*(1-exp(x)))))) %o A355781 (PARI) a(n) = sum(k=0, n, 2^k*(k+1)^(k-1)*stirling(n, k, 2)); %Y A355781 Cf. A052880, A351276, A355788. %K A355781 nonn %O A355781 0,2 %A A355781 _Seiichi Manyama_, Jul 16 2022