This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355801 #17 Jan 04 2024 14:29:31 %S A355801 0,1,0,4,12,12,56,32,16,156,124,24,8,0,4,384,228,72,28,716,648,144,68, %T A355801 8,4,1312,1144,240,112,8,2244,1912,528,256,3528,3072,696,360,16,5012, %U A355801 5536,1296,524,48,28,7696,6596,1960,572,16,10340,11448,2968,1028,160,24,14520,14428,3872,1156,104,8 %N A355801 Irregular table read by rows: T(n,k) is the number of k-sided polygons, for k>=3, in a square when straight line segments connect the n-1 points between each corner that divide each edge into n equal parts to the n-1 points on the edge on the opposite side of the square. %C A355801 Up to n = 50 the maximum sided k-gon created is the 8-gon. It is plausible this is the maximum sided k-gon for all n, although this is unknown. %C A355801 See A355798 for more images of the square. %C A355801 The keyword "look" is for the n = 10 image. - _N. J. A. Sloane_, Jul 21 2022 %H A355801 Scott R. Shannon, <a href="/A355801/a355801.jpg">Image for n = 10</a>. %e A355801 The table begins: %e A355801 0, 1; %e A355801 0, 4; %e A355801 12, 12; %e A355801 56, 32, 16; %e A355801 156, 124, 24, 8, 0, 4; %e A355801 384, 228, 72, 28; %e A355801 716, 648, 144, 68, 8, 4; %e A355801 1312, 1144, 240, 112, 8; %e A355801 2244, 1912, 528, 256; %e A355801 3528, 3072, 696, 360, 16; %e A355801 5012, 5536, 1296, 524, 48, 28; %e A355801 7696, 6596, 1960, 572, 16; %e A355801 10340, 11448, 2968, 1028, 160, 24; %e A355801 14520, 14428, 3872, 1156, 104, 8; %e A355801 19588, 19156, 5296, 2052, 160, 8; %e A355801 25392, 26112, 7160, 2152, 208, 24; %e A355801 31820, 37244, 9936, 3240, 488, 64; %e A355801 . %e A355801 . %Y A355801 Cf. A355798 (regions), A355799 (vertices), A355800 (edges), A355801 (k-gons), A255011 (all vertices), A290131, A331452, A335678. %K A355801 nonn,tabf,look %O A355801 1,4 %A A355801 _Scott R. Shannon_, Jul 17 2022