cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355813 Number of solutions (p,q) to 1/s^2 + 1/t^2 = 1/p^2 + 1/q^2 where p,q < t = A355812(n).

Original entry on oeis.org

1, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 1, 2, 2, 2, 4, 1, 2, 4, 2, 2, 3, 2, 2, 2, 2, 2, 2, 4, 3, 2, 2, 4, 2, 1, 2, 2, 6, 2, 2, 4, 3, 2, 1, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 2, 2, 1, 2, 6, 1, 2, 6, 4, 2, 4, 1, 2, 2, 8
Offset: 1

Views

Author

Jianing Song, Jul 18 2022

Keywords

Examples

			A355812(1) = 35. 1/s^2 + 1/35^2 = 1/p^2 + 1/q^2 has one solution, (s,p,q) = (5,7,7), so a(1) = 35.
A355812(2) = 55. 1/s^2 + 1/55^2 = 1/p^2 + 1/q^2 has two solutions, (s,p,q) = (10,11,22) and (10,22,11), so a(2) = 55.
A355812(32) = 210. 1/s^2 + 1/210^2 = 1/p^2 + 1/q^2 has three solutions, (s,p,q) = (30,42,42), (95,114,133) and (95,133,114), so a(32) = 3.
		

Crossrefs

Programs

  • PARI
    b(n) = my(v=[;],r); for(p=1, n-1, for(q=1, n-1, r=1/(1/p^2+1/q^2-1/n^2); if(r==r\1 && issquare(r), v=concat(v,[p;q])))); v
    list(lim) = my(v=[],num); for(n=1, lim, if((num=#b(n))>0, v=concat(v, num))); v