This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355815 #14 Jul 19 2022 01:13:45 %S A355815 1,1,1,1,1,1,1,1,3,5,1,1,1,1,15,1,1,1,1,5,3,1,1,1,5,1,3,1,1,1,1,1,3,1, %T A355815 7,1,1,1,3,5,1,7,1,1,15,1,1,1,7,25,3,1,1,1,5,1,3,1,1,1,1,1,21,1,1,1,1, %U A355815 1,3,35,1,1,1,1,25,1,7,1,1,1,3,1,1,7,5,1,3,1,1,1,7,1,3,1,1,1,1,49,3,5,1,1,1,1,105 %N A355815 a(n) = gcd(A276086(n), A277791(n)), where A276086 is primorial base exp-function and A277791 is the denominator of sum of reciprocals of proper divisors of n. %H A355815 Antti Karttunen, <a href="/A355815/b355815.txt">Table of n, a(n) for n = 1..11550</a> %H A355815 Antti Karttunen, <a href="/A355815/a355815.txt">Data supplement: n, a(n) computed for n = 1..65537</a> %H A355815 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %F A355815 a(n) = gcd(A276086(n), A277791(n)). %o A355815 (PARI) %o A355815 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A355815 A277791(n) = denominator((sigma(n)-1)/n); \\ From A277791 %o A355815 A355815(n) = gcd(A276086(n), A277791(n)); %o A355815 (Python) %o A355815 from math import gcd %o A355815 from sympy import nextprime, divisor_sigma %o A355815 def A355815(n): %o A355815 m, p, c = 1, 2, n %o A355815 while c: %o A355815 c, a = divmod(c,p) %o A355815 m *= p**a %o A355815 p = nextprime(p) %o A355815 return gcd(m,n//gcd(n, divisor_sigma(n)-1)) # _Chai Wah Wu_, Jul 18 2022 %Y A355815 Sequence contains only terms of A048103. %Y A355815 Cf. A276086, A277791. %Y A355815 Cf. also A327858, A355003. %K A355815 nonn %O A355815 1,9 %A A355815 _Antti Karttunen_, Jul 18 2022