This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355819 #9 Jul 20 2022 08:49:57 %S A355819 1,-1,-1,0,-1,1,-1,-1,0,1,-1,0,-1,1,1,2,-1,0,-1,0,1,1,-1,1,0,1,-2,0, %T A355819 -1,-1,-1,-8,1,1,1,0,-1,1,1,1,-1,-1,-1,0,0,1,-1,-2,0,0,1,0,-1,2,1,1,1, %U A355819 1,-1,0,-1,1,0,12,1,-1,-1,0,1,-1,-1,0,-1,1,0,0,1,-1,-1,-2,4,1,-1,0,1,1,1,1,-1,0,1,0,1,1,1,8 %N A355819 Dirichlet inverse of A270419, denominator of the rational number obtained when the exponents in prime factorization of n are reinterpreted as alternating binary sums (A065620). %C A355819 Multiplicative because A270419 is. %H A355819 Antti Karttunen, <a href="/A355819/b355819.txt">Table of n, a(n) for n = 1..16383</a> %H A355819 Antti Karttunen, <a href="/A355819/a355819.txt">Data supplement: n, a(n) computed for n = 1..100000</a> %F A355819 a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A270419(n/d) * a(d). %o A355819 (PARI) %o A355819 A065620(n, c=1) = sum(i=0, logint(n+!n, 2), if(bittest(n, i), (-1)^c++<<i)); \\ From A065620 %o A355819 A270419(n) = {n=factor(n); n[, 2]=apply(A065620, n[, 2]); denominator(factorback(n)); }; \\ From A270419 %o A355819 memoA355819 = Map(); %o A355819 A355819(n) = if(1==n,1,my(v); if(mapisdefined(memoA355819,n,&v), v, v = -sumdiv(n,d,if(d<n,A270419(n/d)*A355819(d),0)); mapput(memoA355819,n,v); (v))); %Y A355819 Cf. A065620, A270419. %Y A355819 Cf. also A355826. %K A355819 sign,mult %O A355819 1,16 %A A355819 _Antti Karttunen_, Jul 19 2022