This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355822 #16 Jul 21 2022 16:14:58 %S A355822 2,4,6,8,9,10,12,14,15,16,18,20,21,22,24,26,27,28,30,32,34,35,36,38, %T A355822 39,40,42,44,45,46,48,50,51,52,54,55,56,57,58,60,62,64,65,66,68,69,70, %U A355822 72,74,75,76,78,80,81,82,84,85,86,87,88,90,92,94,95,96,98,99,100,102,104,105,106,108,110,111,112,114,115 %N A355822 Numbers k such that A003961(k) and A276086(k) share a prime factor, where A003961 is fully multiplicative with a(p) = nextprime(p), and A276086 is primorial base exp-function. %H A355822 Antti Karttunen, <a href="/A355822/b355822.txt">Table of n, a(n) for n = 1..10000</a> %H A355822 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A355822 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a> %o A355822 (PARI) %o A355822 A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); }; %o A355822 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A355822 A355820(n) = (1==gcd(A003961(n), A276086(n))); %o A355822 isA355822(n) = !A355820(n); %o A355822 (Python) %o A355822 from math import prod, gcd %o A355822 from itertools import count, islice %o A355822 from sympy import nextprime, factorint %o A355822 def A355822_gen(startvalue=1): # generator of terms >= startvalue %o A355822 for n in count(max(startvalue,1)): %o A355822 k = prod(nextprime(p)**e for p, e in factorint(n).items()) %o A355822 m, p, c = 1, 2, n %o A355822 while c: %o A355822 c, a = divmod(c,p) %o A355822 m *= p**a %o A355822 p = nextprime(p) %o A355822 if gcd(k,m) > 1: %o A355822 yield n %o A355822 A355822_list = list(islice(A355822_gen(),30)) # _Chai Wah Wu_, Jul 18 2022 %Y A355822 Positions of terms > 1 in A355442 and in A355001. %Y A355822 Cf. A003961, A276086, A355002 (subsequence), A355820 (positions of zeros), A355821 (complement), A355835. %Y A355822 Cf. A005843 (even numbers, apart from 0, is a subsequence). %Y A355822 Cf. also A324584. %K A355822 nonn %O A355822 1,1 %A A355822 _Antti Karttunen_, Jul 18 2022