cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355826 Dirichlet inverse of A355825, characteristic function of exponentially odious numbers.

This page as a plain text file.
%I A355826 #12 Jul 20 2022 08:50:30
%S A355826 1,-1,-1,0,-1,1,-1,1,0,1,-1,0,-1,1,1,-2,-1,0,-1,0,1,1,-1,-1,0,1,1,0,
%T A355826 -1,-1,-1,2,1,1,1,0,-1,1,1,-1,-1,-1,-1,0,0,1,-1,2,0,0,1,0,-1,-1,1,-1,
%U A355826 1,1,-1,0,-1,1,0,0,1,-1,-1,0,1,-1,-1,0,-1,1,0,0,1,-1,-1,2,-2,1,-1,0,1,1,1,-1,-1,0,1,0,1,1,1,-2,-1,0,0,0,-1,-1,-1,-1,-1,1,-1,0,-1,-1,1,2,-1,-1,1,0,0,1,1,1,0,1,1,0,1,0,-1,-4
%N A355826 Dirichlet inverse of A355825, characteristic function of exponentially odious numbers.
%C A355826 Multiplicative because A355825 is.
%H A355826 Antti Karttunen, <a href="/A355826/b355826.txt">Table of n, a(n) for n = 1..100000</a>
%H A355826 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F A355826 a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A355825(n/d) * a(d).
%t A355826 s[n_] := If[AllTrue[FactorInteger[n][[;; , 2]], OddQ[DigitCount[#, 2, 1]] &], 1, 0]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, s[n/#]*a[#] &, # < n &]; Array[a, 100] (* _Amiram Eldar_, Jul 19 2022 *)
%o A355826 (PARI)
%o A355826 A355825(n) = factorback(apply(e->(hammingweight(e)%2),factor(n)[,2]));
%o A355826 memoA355826 = Map();
%o A355826 A355826(n) = if(1==n,1,my(v); if(mapisdefined(memoA355826,n,&v), v, v = -sumdiv(n,d,if(d<n,A355825(n/d)*A355826(d),0)); mapput(memoA355826,n,v); (v)));
%Y A355826 Cf. A270428, A355825.
%Y A355826 Differs from related A355824 for the first time at n=128, where a(128) = -4, while A355824(128) = -3.
%Y A355826 Cf. also A355819.
%K A355826 sign,mult
%O A355826 1,16
%A A355826 _Antti Karttunen_, Jul 19 2022