cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355828 Dirichlet inverse of A342671, the greatest common divisor of sigma(n) and A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p).

This page as a plain text file.
%I A355828 #12 Jul 20 2022 18:36:10
%S A355828 1,-3,-1,8,-1,3,-1,-24,0,3,-1,-8,-1,3,1,72,-1,0,-1,-28,1,3,-1,12,0,3,
%T A355828 -4,-8,-1,-3,-1,-222,1,3,1,0,-1,3,1,138,-1,-3,-1,-10,0,3,-1,0,0,0,1,
%U A355828 -8,-1,12,1,24,-3,3,-1,28,-1,3,0,684,-5,-3,-1,-16,1,-3,-1,12,-1,3,0,-8,1,-3,-1,-538,8,3,-1,8,1,3,-3,30
%N A355828 Dirichlet inverse of A342671, the greatest common divisor of sigma(n) and A003961(n), where A003961 is fully multiplicative with a(p) = nextprime(p).
%H A355828 Antti Karttunen, <a href="/A355828/b355828.txt">Table of n, a(n) for n = 1..16384</a>
%H A355828 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A355828 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A355828 a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A342671(n/d) * a(d).
%t A355828 f[p_, e_] := NextPrime[p]^e; s[n_] := GCD[DivisorSigma[1, n], Times @@ f @@@ FactorInteger[n]]; a[1] = 1; a[n_] := - DivisorSum[n, a[#] * s[n/#] &, # < n &]; Array[a, 100] (* _Amiram Eldar_, Jul 20 2022 *)
%o A355828 (PARI)
%o A355828 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A355828 A342671(n) = gcd(sigma(n), A003961(n));
%o A355828 memoA355828 = Map();
%o A355828 A355828(n) = if(1==n,1,my(v); if(mapisdefined(memoA355828,n,&v), v, v = -sumdiv(n,d,if(d<n,A342671(n/d)*A355828(d),0)); mapput(memoA355828,n,v); (v)));
%Y A355828 Cf. A000203, A003961, A342671.
%Y A355828 Cf. also A355829.
%K A355828 sign
%O A355828 1,2
%A A355828 _Antti Karttunen_, Jul 20 2022