cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355853 Primes in A333369.

This page as a plain text file.
%I A355853 #31 Jul 30 2022 12:38:25
%S A355853 3,5,7,13,17,19,31,37,53,59,71,73,79,97,137,139,157,173,179,193,197,
%T A355853 223,227,229,317,359,379,397,443,449,571,593,661,719,739,751,881,883,
%U A355853 887,937,953,971,1009,1117,1151,1171,1223,1229,1447,1511,1579,1597,1663,1667,1669
%N A355853 Primes in A333369.
%e A355853 443 is prime and 443 has two 4's and one 3 in its decimal expansion, hence 443 is a term.
%t A355853 simQ[n_] := AllTrue[Tally @ IntegerDigits[n], EvenQ[Plus @@ #] &]; Select[Prime[Range[300]], simQ] (* _Amiram Eldar_, Jul 19 2022 *)
%o A355853 (PARI) issimber(m) = my(d=digits(m), s=Set(d)); for (i=1, #s, if (#select(x->(x==s[i]), d) % 2 != (s[i] % 2), return (0))); return (1); \\ A333369
%o A355853 isok(m) = isprime(m) && issimber(m); \\ _Michel Marcus_, Jul 19 2022
%o A355853 (Python)
%o A355853 from itertools import count, islice
%o A355853 from sympy import isprime
%o A355853 def A355853_gen(startvalue=1): # generator of terms
%o A355853     return filter(lambda n:not any((str(n).count(d)^int(d))&1 for d in set(str(n))) and isprime(n),count(max(startvalue,1)))
%o A355853 A355853_list = list(islice(A355853_gen(),30)) # _Chai Wah Wu_, Jul 21 2022
%Y A355853 Intersection of A000040 and A333369.
%Y A355853 Subsequence of A355773.
%Y A355853 Supersequence of A155045.
%Y A355853 Similar sequences: A002385, A004023.
%K A355853 nonn,base
%O A355853 1,1
%A A355853 _Bernard Schott_, Jul 19 2022
%E A355853 Extended by _Michel Marcus_, Jul 19 2022