This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355881 #11 Sep 26 2022 20:54:43 %S A355881 1,1,2,1,9,3,1,41,49,4,1,187,801,169,5,1,853,13095,7141,441,6,1,3891, %T A355881 214083,301741,38897,961,7,1,17749,3499929,12749989,3430789,153921, %U A355881 1849,8,1,80963,57218481,538747549,302602093,24653151,488401,3249,9 %N A355881 Table read by descending antidiagonals: T(k,n) (k >= 0, n>= 1) is number of ways to (k+2)-color a 3 X n grid ignoring the variations of two colors. %C A355881 With variations, the number of ways to color a 3 X 1 grid is (k+2)*(k+1)^2. The number of variations of two colors is (k+2)*(k+1). Therefore, T(k,1) = k+1. Only for k=1, the number of variations of two colors equals the number of permutations of all colors, see A020698. %C A355881 T(0,n) = A000012(n) = constant 1 %C A355881 T(1,n) = A020698(n-1) %C A355881 T(2,n) = A355882(n) %C A355881 T(3,n) = A355883(n) %H A355881 Gerhard Kirchner, <a href="/A355881/a355881.pdf">Derivation of the recurrence</a> %F A355881 T(k,n) = k*(k^2 + k + 3) * T(k,n-1) - (k^4 + k^3 + k^2-1) * T(k,n-2) %F A355881 with T(k,1) = k+1, T(k,2) = (k^2+k+1)^2. %F A355881 G.f.: x*(k + 1 - (k^2 + k - 1)*x) / (1 - k*(k^2 + k + 3)*x + (k^4 + k^3 + k^2 - 1)*x^2). %e A355881 Table begins: %e A355881 k\n_1____2______3_________4___________5_____________6________________7 %e A355881 0: 1 1 1 1 1 1 1 %e A355881 1: 2 9 41 187 853 3891 17749 %e A355881 2: 3 49 801 13095 214083 3499929 57218481 %e A355881 3: 4 169 7141 301741 12749989 538747549 22764640981 %e A355881 4: 5 441 38897 3430789 302602093 26690078241 2354115497017 %e A355881 5: 6 961 153921 24653151 3948635061 632443246191 101296892084301 %e A355881 6: 7 1849 488401 129007867 34076567743 9001098120361 2377580042199049 %Y A355881 Cf. A000012, A020698, A355882, A355883. %K A355881 nonn,tabl %O A355881 0,3 %A A355881 _Gerhard Kirchner_, Jul 24 2022