cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355894 Let A354790(n) = Product_{i >= 1} prime(i)^e(i); then a(n) is the concatenation, in reverse order, of e_1, e_2, ..., ending at the exponent of the largest prime factor of A354790(n); a(1)=0 by convention.

This page as a plain text file.
%I A355894 #22 Aug 26 2022 02:44:57
%S A355894 0,1,10,100,1000,10000,11,100000,1000000,10000000,100000000,
%T A355894 1000000000,10000000000,1100,10001,100000000000,100010,1000000000000,
%U A355894 10000000000000,100000000000000,1000000000000000,10000000000000000,100000000000000000,1000000000000000000,10000000000000000000
%N A355894 Let A354790(n) = Product_{i >= 1} prime(i)^e(i); then a(n) is the concatenation, in reverse order, of e_1, e_2, ..., ending at the exponent of the largest prime factor of A354790(n); a(1)=0 by convention.
%C A355894 The terms of A354790 are squarefree, so here the exponents e_i are 0 or 1.
%C A355894 This bears the same relation to A354790 as A355893 does to A090252.
%H A355894 Michael De Vlieger, <a href="/A355894/b355894.txt">Table of n, a(n) for n = 0..1051</a>
%e A355894 The terms, right-justified, for comparison with A355892 and A355893, are:
%e A355894    1 ...................................0
%e A355894    2 ...................................1
%e A355894    3 ..................................10
%e A355894    4 .................................100
%e A355894    5 ................................1000
%e A355894    6 ...............................10000
%e A355894    7 ..................................11
%e A355894    8 ..............................100000
%e A355894    9 .............................1000000
%e A355894   10 ............................10000000
%e A355894   11 ...........................100000000
%e A355894   12 ..........................1000000000
%e A355894   13 .........................10000000000
%e A355894   14 ................................1100
%e A355894   15 ...............................10001
%e A355894   16 ........................100000000000
%e A355894   17 ..............................100010
%e A355894   18 .......................1000000000000
%e A355894   19 ......................10000000000000
%e A355894   20 .....................100000000000000
%e A355894   21 ....................1000000000000000
%e A355894   22 ...................10000000000000000
%e A355894   23 ..................100000000000000000
%e A355894   24 .................1000000000000000000
%e A355894   ...
%Y A355894 Cf. A090252, A354790, A355893.
%K A355894 nonn
%O A355894 0,3
%A A355894 _N. J. A. Sloane_, Aug 25 2022