cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355898 a(1) = a(2) = 1; a(n) = gcd(a(n-1), a(n-2)) + (a(n-1) + a(n-2))/gcd(a(n-1), a(n-2)).

Original entry on oeis.org

1, 1, 3, 5, 9, 15, 11, 27, 39, 25, 65, 23, 89, 113, 203, 317, 521, 839, 1361, 2201, 3563, 5765, 9329, 15095, 24425, 7909, 32335, 40245, 14521, 54767, 69289, 124057, 193347, 317405, 46443, 363849, 136767, 166875, 101217, 89367, 63531, 50969, 114501, 165471, 93327, 86269, 179597, 265867, 445465, 711333
Offset: 1

Views

Author

N. J. A. Sloane, Sep 01 2022

Keywords

Comments

Suggested by A351871.
Sequence appears to diverge, but it would be nice to have a proof.
From Giorgos Kalogeropoulos, Nov 01 2022 : (Start)
Conjecture: For n >= 3775 a(n) can also be expressed in the following three ways:
1) a(n) = 1 + a(n-1) + a(n-2).
2) a(n) = 2*a(n-1) - a(n-3).
3) If A = a(3774), B = a(3772) and F = Fibonacci A000045(n),
a(n) = (A+1)*F(n-3772) - (B+1)*F(n-3774) - 1.
These three formulas only work for n >= 3775. (End)

Crossrefs

Programs

  • Maple
    A351871 := proc(u,v,M) local n,r,s,g,t,a;
    a:=[u,v]; r:=u; s:=v;
    for n from 1 to M do g:=gcd(r,s); t:=g+(r+s)/g; a:=[op(a),t];
       r:=s; s:=t; od;
    a;
    end proc;
    A351871(1,1,100);
  • Mathematica
    Nest[Append[#1, #3 + Total[#2]/#3] & @@ {#1, #2, GCD @@ #2} & @@ {#, #[[-2 ;; -1]], GCD[#[[-2 ;; -1]]]} &, {1, 1}, 48] (* Michael De Vlieger, Sep 03 2022 *)
  • PARI
    {a355898(N=50,A1=1,A2=1)= my(a=vector(N));a[1]=A1;a[2]=A2;for(n=1,N,if(n>2,my(g=gcd(a[n-1],a[n-2]));a[n]=g+(a[n-1]+a[n-2])/g);print1(a[n],",")) } \\ Ruud H.G. van Tol, Sep 19 2022
  • Python
    from math import gcd
    from itertools import islice
    def A355898_gen(): # generator of terms
        yield from (a:=(1,1))
        while True: yield (a:=(a[1],(b:=gcd(*a))+sum(a)//b))[1]
    A355898_list = list(islice(A355898_gen(),30)) # Chai Wah Wu, Sep 01 2022