This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355914 #11 Sep 20 2022 00:49:08 %S A355914 1,2,1,5,2,1,1,4,1,1,2,1,1,2,1,1,4,1,1,8,2,3,3,6,1,1,6,1,1,6,10,2,1,1, %T A355914 2,1,1,2,1,1,4,2,1,1,2,30,5,5,8,1,1,4,43,1,2,1,3,4,1,3,12,1,1,2,1,1,2, %U A355914 1,1,2,3,1,2,1,1,2,25,1,4,1,1,6,1,1,6 %N A355914 a(n) = gcd(b(n-1),b(n)), where b(n) = A351871(n). %C A355914 In order to understand the difference between A351871 (which cycles) and A355898 (which appears to diverge), it would be helpful to understand the difference between the respective gcd sequences (this and A355899 - the latter has a very interesting graph!). %H A355914 Michael S. Branicky, <a href="/A355914/b355914.txt">Table of n, a(n) for n = 2..10001</a> %o A355914 (Python) %o A355914 from math import gcd %o A355914 from itertools import islice %o A355914 def agen(): %o A355914 a = [1, 2] %o A355914 while True: g = gcd(*a); yield g; a = [a[-1], g + sum(a)//g] %o A355914 print(list(islice(agen(), 85))) # _Michael S. Branicky_, Sep 19 2022 %Y A355914 Cf. A351871, A355898, A355899. %K A355914 nonn %O A355914 2,2 %A A355914 _N. J. A. Sloane_, Sep 19 2022 %E A355914 a(66) and beyond from _Michael S. Branicky_, Sep 19 2022