This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355915 #35 Sep 21 2022 15:18:22 %S A355915 1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,2,1,1,1,1,1,1,2,1,2,1,2,1, %T A355915 2,1,2,2,1,1,2,1,1,2,1,1,2,1,3,1,1,1,2,1,1,1,2,2,1,1,1,2,1,1,3,2,2,1, %U A355915 1,2,2,1,2,2,1,2,1,1,2,1,1,2,2,1,3,1,2,2,3,1,2,1,2,2,2,1,3,3,2,1 %N A355915 Number of ways to write n as a sum of numbers of the form 2^r * 3^s, where r and s are >= 0, and no summand divides another. %C A355915 It is a theorem of Erdos [Erdős] that this representation is always possible. %C A355915 Without the divisibility constraint the answer is A062051. %C A355915 See A356792 for when k first appears. %H A355915 Michael S. Branicky, <a href="/A355915/b355915.txt">Table of n, a(n) for n = 1..10000</a> %H A355915 Michael S. Branicky, <a href="/A355915/a355915_1.py.txt">Python Program</a> %H A355915 William Lowell Putman Mathematical Competition, <a href="http://math.hawaii.edu/home/pdf/putnam/2005.pdf">Number 66, 2005, Problem A-1</a>. %e A355915 Illustration of initial terms: %e A355915 1 = 2^0 %e A355915 2 = 2^1 %e A355915 3 = 3^1 %e A355915 4 = 2^2 %e A355915 5 = 2+3 %e A355915 6 = 2*3 %e A355915 7 = 2^2+3 %e A355915 8 = 2^3 %e A355915 9 = 3^2 %e A355915 10 = 2^2 + 2*3 %e A355915 11 = 2+3^2 = 2^3+3 (this is the first time there are 2 solutions) %e A355915 12 = 2^2*3 %e A355915 13 = 2^2+3^2 %e A355915 14 = 2^3+2*3 %e A355915 ... %o A355915 (Python) # see linked program %Y A355915 Cf. A062051, A356792. %K A355915 nonn %O A355915 1,11 %A A355915 _Michael S. Branicky_ and _N. J. A. Sloane_, Sep 21 2022 %E A355915 More than the usual number of terms are shown, to distinguish this from similar sequences.