cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355924 Square array A(n,k) = A342671(A246278(n,k)), read by falling antidiagonals, where A342671(x) = gcd(sigma(x), A003961(x)).

This page as a plain text file.
%I A355924 #9 Jul 22 2022 10:37:50
%S A355924 3,1,1,3,1,1,3,1,1,1,3,5,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,
%T A355924 1,1,3,1,7,1,1,17,1,1,1,21,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,15,
%U A355924 1,1,1,1,1,1,1,1,1,1,1,3,5,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,19,1,1,1,1,1,37,1,1,1
%N A355924 Square array A(n,k) = A342671(A246278(n,k)), read by falling antidiagonals, where A342671(x) = gcd(sigma(x), A003961(x)).
%H A355924 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H A355924 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%F A355924 A(n,k) = A342671(A246278(n,k)).
%F A355924 A(n, k) = gcd(A246278(1+n,k), A355927(n, k)).
%e A355924 The top left corner of the array:
%e A355924    n=  1  2  3   4  5  6  7   8  9  10 11  12  13  14 15 16 17 18 19  20 21
%e A355924   2n=  2  4  6   8 10 12 14  16 18  20 22  24  26  28 30 32 34 36 38  40 42
%e A355924 -----+-----------------------------------------------------------------------
%e A355924    1 | 3, 1, 3,  3, 3, 1, 3,  1, 3, 21, 3, 15,  3,  1, 3, 9, 3, 1, 3,  9, 3,
%e A355924    2 | 1, 1, 1,  5, 1, 1, 1,  1, 1,  1, 1,  5,  1, 13, 1, 1, 5, 1, 1,  5, 1,
%e A355924    3 | 1, 1, 1,  1, 1, 1, 7,  1, 1,  1, 1,  1,  1,  7, 1, 7, 1, 1, 1, 13, 7,
%e A355924    4 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1, 19, 1, 1, 1, 1, 1,  1, 1,
%e A355924    5 | 1, 1, 1,  1, 1, 1, 1,  1, 1, 19, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924    6 | 1, 1, 1, 17, 1, 1, 1,  1, 1,  1, 1, 17,  1,  1, 1, 1, 1, 1, 1, 17, 1,
%e A355924    7 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1, 19,  1, 1, 1, 1, 1, 1, 29, 1,
%e A355924    8 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924    9 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924   10 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924   11 | 1, 1, 1, 37, 1, 1, 1,  1, 1,  1, 1, 37,  1,  1, 1, 1, 1, 1, 1, 37, 1,
%e A355924   12 | 1, 1, 1,  1, 1, 1, 1, 41, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924   13 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924   14 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924   15 | 1, 1, 1,  1, 1, 1, 1,  1, 1, 61, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924   16 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924   17 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924   18 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924   19 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924   20 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%e A355924   21 | 1, 1, 1,  1, 1, 1, 1,  1, 1,  1, 1,  1,  1,  1, 1, 1, 1, 1, 1,  1, 1,
%o A355924 (PARI)
%o A355924 up_to = 105;
%o A355924 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f));
%o A355924 A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A355924 A342671(n) = gcd(sigma(n), A003961(n));
%o A355924 A355924sq(row,col) = A342671(A246278sq(row,col));
%o A355924 A355924list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A355924sq(col,(a-(col-1))))); (v); };
%o A355924 v355924 = A355924list(up_to);
%o A355924 A355924(n) = v355924[n];
%Y A355924 Cf. A000203, A003961, A246278, A342671, A355833.
%Y A355924 Cf. also A355925, A355926, A355927 for similarly constructed arrays.
%K A355924 nonn,tabl
%O A355924 1,1
%A A355924 _Antti Karttunen_, Jul 21 2022