This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355927 #11 Jul 24 2022 10:45:35 %S A355927 3,7,4,12,13,6,15,24,31,8,18,40,48,57,12,28,32,156,96,133,14,24,78,72, %T A355927 400,168,183,18,31,48,248,112,1464,252,307,20,39,121,84,684,216,2380, %U A355927 360,381,24,42,124,781,144,1862,280,5220,480,553,30,36,104,342,2801,240,3294,432,7240,720,871,32,60,56,372,1064,16105,336,6140,600,12720,960,993,38 %N A355927 Square array A(n, k) = sigma(A246278(n, k)), read by falling antidiagonals. %C A355927 Each column is strictly monotonic. %H A355927 Antti Karttunen, <a href="/A355927/b355927.txt">Table of n, a(n) for n = 1..22155; the first 210 antidiagonals</a> %H A355927 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %H A355927 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A355927 A(n, k) = A000203(A246278(n, k)). %F A355927 A(n, k) = A341605(n, k) * A355925(n, k). %e A355927 The top left corner of the array: %e A355927 k= 1 2 3 4 5 6 7 8 9 10 11 12 %e A355927 2k= 2 4 6 8 10 12 14 16 18 20 22 24 %e A355927 ----+-------------------------------------------------------------------------- %e A355927 1 | 3, 7, 12, 15, 18, 28, 24, 31, 39, 42, 36, 60, %e A355927 2 | 4, 13, 24, 40, 32, 78, 48, 121, 124, 104, 56, 240, %e A355927 3 | 6, 31, 48, 156, 72, 248, 84, 781, 342, 372, 108, 1248, %e A355927 4 | 8, 57, 96, 400, 112, 684, 144, 2801, 1064, 798, 160, 4800, %e A355927 5 | 12, 133, 168, 1464, 216, 1862, 240, 16105, 2196, 2394, 288, 20496, %e A355927 6 | 14, 183, 252, 2380, 280, 3294, 336, 30941, 4298, 3660, 420, 42840, %e A355927 7 | 18, 307, 360, 5220, 432, 6140, 540, 88741, 6858, 7368, 576, 104400, %e A355927 8 | 20, 381, 480, 7240, 600, 9144, 640, 137561, 11060, 11430, 760, 173760, %e A355927 9 | 24, 553, 720, 12720, 768, 16590, 912, 292561, 20904, 17696, 1008, 381600, %e A355927 Note: See A355941 for the corresponding numbers in A246278 at which points the value in this array divides the term immediately below. %o A355927 (PARI) %o A355927 up_to = 105; %o A355927 A246278sq(row,col) = if(1==row,2*col, my(f = factor(2*col)); for(i=1, #f~, f[i,1] = prime(primepi(f[i,1])+(row-1))); factorback(f)); %o A355927 A355927sq(row,col) = sigma(A246278sq(row,col)); %o A355927 A355927list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A355927sq(col,(a-(col-1))))); (v); }; %o A355927 v355927 = A355927list(up_to); %o A355927 A355927(n) = v355927[n]; %Y A355927 Cf. A000203, A246278. %Y A355927 Cf. A008864 (column 1), A062731 (row 1). %Y A355927 Cf. also A341605, A355925, A355941. %K A355927 nonn,tabl,look %O A355927 1,1 %A A355927 _Antti Karttunen_, Jul 22 2022