cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355950 a(n) = Sum_{k=1..n} k^(k-1) * floor(n/k).

This page as a plain text file.
%I A355950 #16 Jul 22 2022 10:12:21
%S A355950 1,4,14,81,707,8495,126145,2223364,45270095,1045270723,26982695325,
%T A355950 769991073865,24068076196347,817782849568143,30010708874959403,
%U A355950 1182932213483903598,49844124089150772080,2235755683827890358557,106363105981739131891399
%N A355950 a(n) = Sum_{k=1..n} k^(k-1) * floor(n/k).
%H A355950 Seiichi Manyama, <a href="/A355950/b355950.txt">Table of n, a(n) for n = 1..387</a>
%F A355950 a(n) = Sum_{k=1..n} Sum_{d|k} d^(d-1).
%F A355950 G.f.: (1/(1-x)) * Sum_{k>0} k^(k-1) * x^k/(1 - x^k).
%o A355950 (PARI) a(n) = sum(k=1, n, n\k*k^(k-1));
%o A355950 (PARI) a(n) = sum(k=1, n, sumdiv(k, d, d^(d-1)));
%o A355950 (PARI) my(N=20, x='x+O('x^N)); Vec(sum(k=1, N, k^(k-1)*x^k/(1-x^k))/(1-x))
%o A355950 (Python)
%o A355950 def A355950(n): return n*(1+n**(n-2))+sum(k**(k-1)*(n//k) for k in range(2,n)) if n>1 else 1 # _Chai Wah Wu_, Jul 21 2022
%Y A355950 Partial sums of A262843.
%Y A355950 Cf. A006218, A268235, A344814, A344815, A344816.
%Y A355950 Cf. A060946, A355887.
%K A355950 nonn
%O A355950 1,2
%A A355950 _Seiichi Manyama_, Jul 21 2022