This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355960 #12 Sep 17 2024 04:30:23 %S A355960 3,23,1574773 %N A355960 Primes p such that (p+5)^(p-1) == 1 (mod p^2). %C A355960 Equivalently, primes p such that 5^p == p+5 (mod p^2), or Fermat quotient q_p(5) == 1/5 (mod p). - _Max Alekseyev_, Sep 16 2024 %o A355960 (PARI) forprime(p=1, , if(Mod(p+5, p^2)^(p-1)==1, print1(p, ", "))) %Y A355960 (p+k)^(p-1) == 1 (mod p^2): A355959 (k=2), A355961 (k=6), A355962 (k=7), A355963 (k=8), A355964 (k=9), A355965 (k=10). %K A355960 nonn,hard,more,bref %O A355960 1,1 %A A355960 _Felix Fröhlich_, Jul 21 2022