This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355962 #16 Sep 17 2024 04:30:34 %S A355962 2,3,229,701,31446553,1016476523,8918351831 %N A355962 Primes p such that (p+7)^(p-1) == 1 (mod p^2). %C A355962 a(8) > 10^13 if it exists. - _Jason Yuen_, May 12 2024 %C A355962 Equivalently, primes p such that 7^p == p+7 (mod p^2), or Fermat quotient q_p(7) == 1/7 (mod p). - _Max Alekseyev_, Sep 16 2024 %o A355962 (PARI) forprime(p=1, , if(Mod(p+7, p^2)^(p-1)==1, print1(p, ", "))) %Y A355962 (p+k)^(p-1) == 1 (mod p^2): A355959 (k=2), A355960 (k=5), A355961 (k=6), A355963 (k=8), A355964 (k=9), A355965 (k=10). %K A355962 nonn,hard,more %O A355962 1,1 %A A355962 _Felix Fröhlich_, Jul 21 2022 %E A355962 a(7) from _Jason Yuen_, May 12 2024