A355973 Numbers that can be written as the product of two of its divisors such that the reverse of the binary value of the number equals the concatenation of the binary values of the divisors.
351, 623, 5075, 5535, 21231, 69237, 78205, 88479, 89975, 101239, 173555, 286011, 339183, 357471, 625583, 687245, 1349487, 1415583, 2527343, 3094039, 5426415, 5648031, 5721183, 5764651, 6157723, 8512457, 10137575, 10974951, 11365839, 11775915, 14760911, 18617337, 21587823, 21734127, 22649247
Offset: 1
Examples
351 is a term as 351 = 101011111_2 = 3 * 117 = 11_2 * 1110101_2, and "101011111" in reverse is "111110101" which equals "11" + "1110101". See the attached text file for other examples.
Links
- Scott R. Shannon, Divisor products for the first 46 terms. These are all the terms up to 100000000.
Programs
-
Mathematica
Select[Range[2^18], Function[{k, d, m}, AnyTrue[Map[Join @@ IntegerDigits[#, 2] &, Transpose@ {d, k/d}], # == m &]] @@ {#, Divisors[#], Reverse@ IntegerDigits[#, 2]} &] (* Michael De Vlieger, Jul 23 2022 *)
-
Python
from sympy import divisors def ok(n): if not n&1: return False t = bin(n)[2:][::-1] return any(t==bin(d)[2:]+bin(n//d)[2:] for d in divisors(n, generator=True)) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Apr 13 2024
Comments