cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A355978 Decimal expansion of Product_{k>=1} zeta(Prime(k)).

This page as a plain text file.
%I A355978 #5 Jul 22 2022 04:31:37
%S A355978 2,0,6,8,7,3,5,9,9,7,9,7,1,6,5,8,3,3,7,8,6,3,6,2,1,9,8,0,9,9,4,0,4,9,
%T A355978 2,8,3,4,1,3,4,0,7,4,9,8,8,9,7,6,7,9,6,7,7,1,2,9,8,0,7,2,5,1,9,9,7,3,
%U A355978 6,3,9,8,7,2,4,8,4,7,5,8,1,5,9,5,4,0,9,9,5,5,8,1,7,4,0,2,4,1,7,1,6,2,4,9,1
%N A355978 Decimal expansion of Product_{k>=1} zeta(Prime(k)).
%H A355978 Robert A. Van Gorder, <a href="http://www.m-hikari.com/ijcms-2010/29-32-2010/vangorderIJCMS29-32-2010.pdf">Infinite Multiple Products over the Primes of Type Product Product (1 - p_n^{-p_m})^{-1} and Generalizations</a>, Int. J. Contemp. Math. Sciences, Vol. 5, No. 31 (2010), pp. 1499-1504.
%F A355978 Equals Product_{m,n>=1} 1/(1-prime(n)^(-prime(m))) = Product_{m>=1} 1/(1-1/A053810(m)).
%e A355978 2.06873599797165833786362198099404928341340749889767...
%t A355978 RealDigits[Product[Zeta[Prime[n]], {n, 1, 100}], 10, 100][[1]]
%Y A355978 Cf. A021002, A053810, A080729, A080730.
%K A355978 nonn,cons
%O A355978 1,1
%A A355978 _Amiram Eldar_, Jul 22 2022