This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A355995 #15 Feb 16 2025 08:34:03 %S A355995 0,0,0,0,4,10,40,210,2464,20160,178800,1755600,22323840,289729440, %T A355995 3950069760,57127870800,921032555520,15786602832000,284810759251200, %U A355995 5394363163862400,108742028591923200,2312415679065811200,51543520889668684800,1199641884471310156800 %N A355995 Expansion of e.g.f. -LambertW(x^3/6 * log(1-x)). %H A355995 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A355995 a(n) = n! * Sum_{k=1..floor(n/4)} k^(k-1) * |Stirling1(n-3*k,k)|/(6^k * (n-3*k)!). %t A355995 With[{m = 25}, Range[0, m]! * CoefficientList[Series[-ProductLog[x^3/6 * Log[1 - x]], {x, 0, m}], x]] (* _Amiram Eldar_, Sep 24 2022 *) %o A355995 (PARI) my(N=30, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(serlaplace(-lambertw(x^3/6*log(1-x))))) %o A355995 (PARI) a(n) = n!*sum(k=1, n\4, k^(k-1)*abs(stirling(n-3*k, k, 1))/(6^k*(n-3*k)!)); %Y A355995 Cf. A052807, A355994, A357265. %K A355995 nonn %O A355995 0,5 %A A355995 _Seiichi Manyama_, Sep 24 2022