cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356002 A family of triangles T(m), m >= 0, read by triangles and then by rows; triangle T(0) is [1; 1, 1]; for m >= 0, triangle T(m+1) is obtained by replacing each subtriangle [t; u, v] in T(m) by [t; 2*t+u, 2*t+v; t+2*u, t+u+v, t+2*v; u, 2*u+v, u+2*v, v].

This page as a plain text file.
%I A356002 #16 Jan 18 2023 03:28:54
%S A356002 1,1,1,1,3,3,3,3,3,1,3,3,1,1,5,5,7,7,7,3,9,9,3,9,9,9,9,9,9,9,9,9,9,9,
%T A356002 3,9,9,3,9,9,3,7,9,9,9,9,9,9,7,5,7,9,9,9,9,9,7,5,1,5,7,3,9,9,3,7,5,1,
%U A356002 1,7,7,11,11,11,5,15,15,5,17,17,17,17,17
%N A356002 A family of triangles T(m), m >= 0, read by triangles and then by rows; triangle T(0) is [1; 1, 1]; for m >= 0, triangle T(m+1) is obtained by replacing each subtriangle [t; u, v] in T(m) by [t; 2*t+u, 2*t+v; t+2*u, t+u+v, t+2*v; u, 2*u+v, u+2*v, v].
%C A356002 We apply the following substitutions to transform T(m) into T(m+1):
%C A356002                             t
%C A356002                            / \
%C A356002                           /   \
%C A356002        t               2*t+u 2*t+v
%C A356002       / \    ___\       / \   / \
%C A356002      /   \      /      /   \ /   \
%C A356002     u-----v         t+2*u t+u+v t+2*v
%C A356002                      / \   / \   / \
%C A356002                     /   \ /   \ /   \
%C A356002                    u---2*u+v--u+2*v--v
%C A356002 and:
%C A356002                    u---2*u+v--u+2*v--v
%C A356002                     \   / \   / \   /
%C A356002                      \ /   \ /   \ /
%C A356002     u-----v         t+2*u t+u+v t+2*v
%C A356002      \   /   ___\      \   / \   /
%C A356002       \ /       /       \ /   \ /
%C A356002        t               2*t+u 2*t+v
%C A356002                           \   /
%C A356002                            \ /
%C A356002                             t
%C A356002 T(m) has 3^m+1 rows, and largest term 3^m.
%C A356002 All terms are odd.
%C A356002 As m gets larger, T(m) exhibits interesting fractal features (see illustrations in Links section).
%H A356002 Rémy Sigrist, <a href="/A356002/a356002.png">Colored representation of T(6)</a> (the color is function of T(6)(n,k))
%H A356002 Rémy Sigrist, <a href="/A356002/a356002_1.png">Colored representation of T(6)</a> (the color is function of the 3-adic valuation of T(6)(n,k))
%H A356002 Rémy Sigrist, <a href="/A356002/a356002_2.png">Representation of the terms congruent to 3 mod 4 in T(6)</a>
%H A356002 Rémy Sigrist, <a href="/A356002/a356002.gp.txt">PARI program</a>
%H A356002 Rémy Sigrist, <a href="https://arxiv.org/abs/2301.06039">Nonperiodic tilings related to Stern's diatomic series and based on tiles decorated with elements of Fp</a>, arXiv:2301.06039 [math.CO], 2023.
%e A356002 Triangle T(0) is:
%e A356002               1
%e A356002              1 1
%e A356002 Triangle T(1) is:
%e A356002               1
%e A356002              3 3
%e A356002             3 3 3
%e A356002            1 3 3 1
%e A356002 Triangle T(2) is:
%e A356002               1
%e A356002              5 5
%e A356002             7 7 7
%e A356002            3 9 9 3
%e A356002           9 9 9 9 9
%e A356002          9 9 9 9 9 9
%e A356002         3 9 9 3 9 9 3
%e A356002        7 9 9 9 9 9 9 7
%e A356002       5 7 9 9 9 9 9 7 5
%e A356002      1 5 7 3 9 9 3 7 5 1
%o A356002 (PARI) See Links section.
%Y A356002 See A355855 for a similar sequence.
%Y A356002 Cf. A177407.
%K A356002 nonn,tabf
%O A356002 0,5
%A A356002 _Rémy Sigrist_, Jul 22 2022