This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356006 #20 Jul 26 2022 10:10:08 %S A356006 0,1,1,2,1,2,0,3,2,2,0,3,0,1,2,4,0,3,0,3,1,1,0,4,2,1,3,2,0,3,0,5,1,1, %T A356006 1,4,0,1,1,4,0,2,0,2,3,1,0,5,0,3,1,2,0,4,1,3,1,1,0,4,0,1,2,6,1,2,0,2, %U A356006 1,2,0,5,0,1,3,2,0,2,0,5,4,1,0,3,1,1,1 %N A356006 The number of prime divisors of n that are not greater than 5, counted with multiplicity. %C A356006 Equivalently, the number of prime divisors, counted with multiplicity, of the largest 5-smooth divisor of n. %H A356006 Amiram Eldar, <a href="/A356006/b356006.txt">Table of n, a(n) for n = 1..10000</a> %F A356006 Totally additive with a(p) = 1 if p <= 5, and 0 otherwise. %F A356006 a(n) = A007814(n) + A007949(n) + A112765(n). %F A356006 a(n) = A001222(A355582(n)). %F A356006 Asymptotic mean: lim_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 7/4. %t A356006 a[n_] := Plus @@ IntegerExponent[n, {2, 3, 5}]; Array[a, 100] %o A356006 (PARI) a(n) = valuation(n, 2) + valuation(n, 3) + valuation(n, 5); %o A356006 (Python) %o A356006 from sympy import multiplicity as v %o A356006 def a(n): return v(2, n) + v(3, n) + v(5, n) %o A356006 print([a(n) for n in range(1, 88)]) # _Michael S. Branicky_, Jul 25 2022 %Y A356006 Cf. A007814, A007949, A112765. %Y A356006 Cf. A001222, A112759, A169611, A355582, A355583, A355584. %K A356006 nonn,easy %O A356006 1,4 %A A356006 _Amiram Eldar_, Jul 23 2022