cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356016 Consider the exponents in the prime factorization of n, and replace each run of k consecutive e's by a unique k; the resulting list corresponds to the exponents in the prime factorization of a(n).

This page as a plain text file.
%I A356016 #9 Jul 25 2022 10:43:24
%S A356016 1,2,6,2,12,4,24,2,6,30,48,6,96,90,18,2,192,6,384,30,210,270,768,6,12,
%T A356016 810,6,90,1536,8,3072,2,1050,2430,36,4,6144,7290,5250,30,12288,60,
%U A356016 24576,270,30,21870,49152,6,24,30,26250,810,98304,6,420,90,131250
%N A356016 Consider the exponents in the prime factorization of n, and replace each run of k consecutive e's by a unique k; the resulting list corresponds to the exponents in the prime factorization of a(n).
%C A356016 We ignore the exponents (all 0's) for the prime numbers beyond the greatest prime factor of n.
%C A356016 There are only two fixed points: a(1) = 1 and a(2) = 2.
%C A356016 Iterating the sequence starting from any n > 1 will always eventually reach the fixed point 2.
%F A356016 a(n) = A319522(A356008(n)).
%F A356016 a(n^k) = a(n) for any k > 0.
%F A356016 a(n) = 2 iff n is a power of 2 > 1.
%F A356016 a(n) = 4 iff n is a power of 6 > 1.
%F A356016 a(n) = 2^k iff n is a power of A002110(k) > 1 (with k > 0).
%F A356016 a(prime(n)) = 3*2^(n-1) for any n > 1.
%e A356016 For n = 99:
%e A356016 - 99 = 11^1 * 7^0 * 5^0 * 3^2 * 2^0,
%e A356016 - the list of exponents is: 1 0 0 2 0,
%e A356016 - the run lengths are: 1 2 1 1,
%e A356016 - so a(99) = 7^1 * 5^2 * 3^1 * 2^1 = 1050.
%o A356016 (PARI) a(n) = { my (v=1, e=-1, k=0, r=0); forprime (p=2, oo, if (n==1, return (v*if (r, prime(k++)^r, 1)), if (e!=e=valuation(n,p), if (r, v*=prime(k++)^r; r=0)); r++; n/=p^e)) }
%Y A356016 Cf. A002110, A067255, A318928, A319522, A356008, A356014.
%K A356016 nonn
%O A356016 1,2
%A A356016 _Rémy Sigrist_, Jul 23 2022