cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356031 Decimal expansion of the real root of 2*x^3 + x - 1.

This page as a plain text file.
%I A356031 #16 Feb 04 2024 15:42:39
%S A356031 5,8,9,7,5,4,5,1,2,3,0,1,4,5,8,3,8,4,2,7,8,8,0,1,7,4,7,0,9,6,0,7,1,3,
%T A356031 6,2,4,5,1,4,3,5,1,7,3,2,2,8,3,6,2,0,7,2,3,8,8,0,7,9,3,4,1,2,3,5,0,4,
%U A356031 8,0,2,4,1,5,7,7
%N A356031 Decimal expansion of the real root of 2*x^3 + x - 1.
%F A356031 Equals (1/6)*(54+6*sqrt(87))^(1/3) - 1/(54+6*sqrt(87))^(1/3).
%F A356031 Equals ((54 + 6*sqrt(87))^(1/3) - (54 - 6*sqrt(87))^(1/3)*(1-sqrt(3)*i)/2)/6, with i the imaginary unit sqrt(-1).
%F A356031 Equals -sqrt(2/3) * sinh(log((sqrt(58) - 3*sqrt(6))/2)/3). - _Vaclav Kotesovec_, Aug 19 2022
%e A356031 0.5897545123014583842788017470960713624514351732283620723880793412350480241...
%t A356031 First[RealDigits[N[Root[-1+#1+2 #1^3 &, 1, 0], 76]]] (* _Stefano Spezia_, Aug 19 2022 *)
%o A356031 (PARI) solve(x=0, 1, 2*x^3 + x - 1) \\ _Michel Marcus_, Aug 19 2022
%Y A356031 Cf. A356030.
%K A356031 nonn,cons,easy
%O A356031 0,1
%A A356031 _Wolfdieter Lang_, Aug 19 2022