A356036 Triangle read by rows, giving in the first column the powers of 3 (A000244) and in the next columns 4/3 times the previous row entry.
1, 3, 4, 9, 12, 16, 27, 36, 48, 64, 81, 108, 144, 192, 256, 243, 324, 432, 576, 768, 1024, 729, 972, 1296, 1728, 2304, 3072, 4096, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 6561, 8748, 11664, 15552, 20736, 27648, 36864, 49152, 65536, 19683, 26244, 34992, 46656, 62208, 82944, 110592, 147456, 196608, 262144
Offset: 0
Examples
The triangle T begins: n\k 0 1 2 3 4 5 6 7 8 9 ... 0: 1 1: 3 4 2: 9 12 16 3: 27 36 48 64 4: 81 108 144 192 256 5: 243 324 432 576 768 1024 6: 729 972 1296 1728 2304 3072 4096 7: 2187 2916 3888 5184 6912 9216 12288 16384 8: 6561 8748 11664 15552 20736 27648 36864 49152 65536 9: 19683 26244 34992 46656 62208 82944 110592 147456 196608 262144 ...
References
- Thomas Sonar, 3000 Jahre Analysis, 2. Auflage, Springer Spektrum, 2016, p.94, Abb. 3.1.2 und Abb. 3.1.3.
Links
- Anicius Manlius Severinus Boethius, De Institutione Arithmetica, 1488, p. 55 of 104, top of left column.
Crossrefs
Programs
-
Mathematica
T[n_, k_] := 3^(n - k) * 4^k; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 05 2022 *)
Formula
T(n, k) = 3^(n-k)*4^k, for n >= 0, and k = 1, 2, ..., n.
G.f. of row polynomials R(n, y) = Sum_{k=0..n} T(n, k)*y^k: G(x, y) = 1/((1 - 3*x)*(1 - 4*x*y)).
Comments