This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356042 #15 Aug 07 2022 04:07:52 %S A356042 1,7,18,45,72,138,189,301,403,565,688,985,1156,1462,1759,2212,2503, %T A356042 3115,3478,4207,4768,5506,6037,7269,7947,8973,9895,11272,12115,13897, %U A356042 14860,16678,18031,19777,21154,23908,25279,27457,29338,32362,34045,37411,39262,42583 %N A356042 a(n) = Sum_{k=1..n} sigma_2(k) * floor(n/k). %F A356042 a(n) = Sum_{k=1..n} Sum_{d|k} d^2 * tau(k/d). %F A356042 G.f.: (1/(1-x)) * Sum_{k>=1} sigma_2(k) * x^k/(1 - x^k). %F A356042 a(n) ~ zeta(3)^2 * n^3 / 3. - _Vaclav Kotesovec_, Aug 07 2022 %t A356042 Table[Sum[DivisorSigma[2, k]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* _Vaclav Kotesovec_, Aug 07 2022 *) %o A356042 (PARI) a(n) = sum(k=1, n, sigma(k, 2)*(n\k)); %o A356042 (PARI) a(n) = sum(k=1, n, sumdiv(k, d, d^2*numdiv(k/d))); %o A356042 (PARI) my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, 2)*x^k/(1-x^k))/(1-x)) %Y A356042 Partial sums of A007433. %Y A356042 Column k=2 of A356045. %Y A356042 Cf. A000005 (tau). %K A356042 nonn %O A356042 1,2 %A A356042 _Seiichi Manyama_, Jul 24 2022