This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356043 #14 Aug 07 2022 04:15:02 %S A356043 1,11,40,123,250,540,885,1553,2339,3609,4942,7349,9548,12998,16681, %T A356043 22030,26945,34805,41666,52207,62212,75542,87711,107083,122961,144951, %U A356043 166177,194812,219203,256033,285826,328624,367281,416431,460246,525484,576139,644749,708520 %N A356043 a(n) = Sum_{k=1..n} sigma_3(k) * floor(n/k). %F A356043 a(n) = Sum_{k=1..n} Sum_{d|k} d^3 * tau(k/d). %F A356043 G.f.: (1/(1-x)) * Sum_{k>=1} sigma_3(k) * x^k/(1 - x^k). %F A356043 a(n) ~ Pi^8 * n^4 / 32400. - _Vaclav Kotesovec_, Aug 07 2022 %t A356043 Table[Sum[DivisorSigma[3, k]*Floor[n/k], {k, 1, n}], {n, 1, 50}] (* _Vaclav Kotesovec_, Aug 07 2022 *) %o A356043 (PARI) a(n) = sum(k=1, n, sigma(k, 3)*(n\k)); %o A356043 (PARI) a(n) = sum(k=1, n, sumdiv(k, d, d^3*numdiv(k/d))); %o A356043 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k, 3)*x^k/(1-x^k))/(1-x)) %Y A356043 Partial sums of A321140. %Y A356043 Column k=3 of A356045. %Y A356043 Cf. A000005 (tau). %K A356043 nonn %O A356043 1,2 %A A356043 _Seiichi Manyama_, Jul 24 2022