This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356053 #4 Jul 26 2022 13:41:26 %S A356053 2,4,8,12,14,16,18,25,29,31,33,35,39,41,43,46,48,50,52,56,60,62,67,69, %T A356053 73,77,79,83,87,90,94,96,98,100,104,106,108,110,113,115,117,121,123, %U A356053 125,127,131,134,138,140,142,144,148,152,154,159,161,165,169,171 %N A356053 Intersection of A001951 and A137804. %C A356053 This is the second of four sequences, u^v, u^v', u'^v, u'^v', that partition the positive integers. See A356052. %e A356053 (1) u ^ v = (1, 5, 7, 9, 11, 15, 19, 21, 22, 24, 26, 28, ...) = A356052 %e A356053 (2) u ^ v' = (2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, ...) = A356053 %e A356053 (3) u' ^ v = (3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, ...) = A356054 %e A356053 (4) u' ^ v' = (6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, ...) = A356055 %t A356053 z = 250; %t A356053 u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *) %t A356053 u1 = Complement[Range[Max[u]], u] (* A001952 *) %t A356053 v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *) %t A356053 v1 = Complement[Range[Max[v]], v] (* A137804 *) %t A356053 Intersection[u, v] (* A356052 *) %t A356053 Intersection[u, v1] (* A356053 *) %t A356053 Intersection[u1, v] (* A356054 *) %t A356053 Intersection[u1, v1] (* A356055 *) %Y A356053 Cf. A001951, A001952, A136803, A137804, A356052, A356054, A356055, A356056 (composites instead of intersections). %K A356053 nonn,easy %O A356053 1,1 %A A356053 _Clark Kimberling_, Jul 26 2022