This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356055 #4 Jul 26 2022 13:41:44 %S A356055 6,10,20,23,27,37,54,58,64,71,75,81,85,92,102,119,129,136,146,150,157, %T A356055 163,167,177,180,184,194,198,201,211,215,221,228,232,238,242,249,259, %U A356055 276,286,293,297,303,307,314,320,324,341,351,355,358,368,372,378,385 %N A356055 Intersection of A001952 and A137804. %C A356055 This is the fourth of four sequences, u^v, u^v', u'^v, u'^v', that partition the positive integers. See A356052. %e A356055 (1) u ^ v = (1, 5, 7, 9, 11, 15, 19, 21, 22, 24, 26, 28, ...) = A356052 %e A356055 (2) u ^ v' = (2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, ...) = A356053 %e A356055 (3) u' ^ v = (3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, ...) = A356054 %e A356055 (4) u' ^ v' = (6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, ...) = A356055 %t A356055 z = 250; %t A356055 u = Table[Floor[n (Sqrt[2])], {n, 1, z}] (* A001951 *) %t A356055 u1 = Complement[Range[Max[u]], u] (* A001952 *) %t A356055 v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}] (* A137803 *) %t A356055 v1 = Complement[Range[Max[v]], v] (* A137804 *) %t A356055 Intersection[u, v] (* A356052 *) %t A356055 Intersection[u, v1] (* A356053 *) %t A356055 Intersection[u1, v] (* A356054 *) %t A356055 Intersection[u1, v1] (* A356055 *) %Y A356055 Cf. A001951, A001952, A136803, A137804, A356052, A356053, A356055, A356056 (composites instead of intersections), A356081. %K A356055 nonn,easy %O A356055 1,1 %A A356055 _Clark Kimberling_, Jul 26 2022