cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356055 Intersection of A001952 and A137804.

This page as a plain text file.
%I A356055 #4 Jul 26 2022 13:41:44
%S A356055 6,10,20,23,27,37,54,58,64,71,75,81,85,92,102,119,129,136,146,150,157,
%T A356055 163,167,177,180,184,194,198,201,211,215,221,228,232,238,242,249,259,
%U A356055 276,286,293,297,303,307,314,320,324,341,351,355,358,368,372,378,385
%N A356055 Intersection of A001952 and A137804.
%C A356055 This is the fourth of four sequences, u^v, u^v', u'^v, u'^v', that partition the positive integers. See A356052.
%e A356055 (1)  u ^ v = (1, 5, 7, 9, 11, 15, 19, 21, 22, 24, 26, 28, ...) =  A356052
%e A356055 (2)  u ^ v' = (2, 4, 8, 12, 14, 16, 18, 25, 29, 31, 33, 35, ...) =  A356053
%e A356055 (3)  u' ^ v = (3, 13, 17, 30, 34, 40, 44, 47, 51, 61, 68, ...) = A356054
%e A356055 (4)  u' ^ v' = (6, 10, 20, 23, 27, 37, 54, 58, 64, 71, 75, ...) = A356055
%t A356055 z = 250;
%t A356055 u = Table[Floor[n (Sqrt[2])], {n, 1, z}]   (* A001951 *)
%t A356055 u1 = Complement[Range[Max[u]], u]     (* A001952 *)
%t A356055 v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}]  (* A137803 *)
%t A356055 v1 = Complement[Range[Max[v]], v]     (* A137804 *)
%t A356055 Intersection[u, v]    (* A356052 *)
%t A356055 Intersection[u, v1]   (* A356053 *)
%t A356055 Intersection[u1, v]   (* A356054 *)
%t A356055 Intersection[u1, v1]  (* A356055 *)
%Y A356055 Cf. A001951, A001952, A136803, A137804, A356052, A356053, A356055, A356056 (composites instead of intersections), A356081.
%K A356055 nonn,easy
%O A356055 1,1
%A A356055 _Clark Kimberling_, Jul 26 2022