This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356067 #6 Jul 29 2022 09:51:27 %S A356067 0,0,0,0,0,1,0,3,2,5,4,11,7,18,16,26,27,43,41,65,65,92,100,137,142, %T A356067 194,210,270,295,379,410,519,571,699,782,947,1046,1267,1414,1673,1870, %U A356067 2213,2465,2897,3230,3757,4210,4871,5427,6265,6997 %N A356067 Number of integer partitions of n into relatively prime prime-powers. %e A356067 The a(5) = 1 through a(12) = 7 partitions: %e A356067 (32) . (43) (53) (54) (73) (74) (75) %e A356067 (52) (332) (72) (433) (83) (543) %e A356067 (322) (432) (532) (92) (552) %e A356067 (522) (3322) (443) (732) %e A356067 (3222) (533) (4332) %e A356067 (542) (5322) %e A356067 (722) (33222) %e A356067 (3332) %e A356067 (4322) %e A356067 (5222) %e A356067 (32222) %t A356067 Table[Length[Select[IntegerPartitions[n],And@@PrimePowerQ/@#&&GCD@@#==1&]],{n,0,30}] %Y A356067 This is the relatively prime case of A023894, facs A000688, w/ 1's A023893. %Y A356067 For strict instead of coprime: A054685, facs A050361, with 1's A106244. %Y A356067 The version for factorizations instead of partitions is A354911. %Y A356067 A000041 counts partitions, strict A000009. %Y A356067 A072233 counts partitions by sum and length. %Y A356067 A246655 lists the prime-powers (A000961 includes 1), towers A164336. %Y A356067 A279784 counts twice-partitions where the latter partitions are constant. %Y A356067 A289509 lists numbers whose prime indices are relatively prime. %Y A356067 A355743 lists numbers with prime-power prime indices, squarefree A356065. %Y A356067 Cf. A001970, A055887, A063834, A076610, A085970, A355737, A355742. %K A356067 nonn %O A356067 0,8 %A A356067 _Gus Wiseman_, Jul 28 2022