This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356069 #8 Aug 30 2022 09:41:22 %S A356069 1,2,2,3,2,4,2,4,3,3,2,6,2,3,4,5,2,6,2,4,3,3,2,8,3,3,4,4,2,7,2,6,3,3, %T A356069 4,9,2,3,3,5,2,5,2,4,6,3,2,10,3,4,3,4,2,8,3,5,3,3,2,10,2,3,4,7,3,5,2, %U A356069 4,3,5,2,12,2,3,6,4,4,5,2,6,5,3,2,7,3,3 %N A356069 Number of divisors of n whose prime indices cover an interval of positive integers (A073491). %C A356069 First differs from A000005 at 10, 14, 20, 21, 22, ... = A307516. %C A356069 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A356069 The a(n) counted divisors of n = 1, 2, 4, 6, 12, 16, 24, 30, 36, 48, 72, 90: %e A356069 1 2 4 6 12 16 24 30 36 48 72 90 %e A356069 1 2 3 6 8 12 15 18 24 36 45 %e A356069 1 2 4 4 8 6 12 16 24 30 %e A356069 1 3 2 6 5 9 12 18 18 %e A356069 2 1 4 3 6 8 12 15 %e A356069 1 3 2 4 6 9 9 %e A356069 2 1 3 4 8 6 %e A356069 1 2 3 6 5 %e A356069 1 2 4 3 %e A356069 1 3 2 %e A356069 2 1 %e A356069 1 %t A356069 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A356069 nogapQ[m_]:=m=={}||Union[m]==Range[Min[m],Max[m]]; %t A356069 Table[Length[Select[Divisors[n],nogapQ[primeMS[#]]&]],{n,100}] %Y A356069 These divisors belong to A073491, a superset of A055932, complement A073492. %Y A356069 The initial case is A356224. %Y A356069 The complement in the initial case is counted by A356225. %Y A356069 A000005 counts divisors. %Y A356069 A001223 lists the prime gaps. %Y A356069 A056239 adds up prime indices, row sums of A112798, lengths A001222. %Y A356069 A328338 has third-largest divisor prime. %Y A356069 A356226 gives the lengths of maximal gapless intervals of prime indices. %Y A356069 Cf. A028334, A029709, A055874, A070824, A119313, A137921, A287170, A307516, A356223, A356233-A356237. %K A356069 nonn %O A356069 1,2 %A A356069 _Gus Wiseman_, Aug 28 2022