A356079 Primes p such that p+6, p-6, 2*p+3 and 2*p-3 are prime.
13, 17, 53, 67, 157, 563, 613, 647, 1187, 1453, 1663, 4007, 4133, 5443, 5743, 6073, 6863, 7823, 8747, 11833, 12113, 12583, 12653, 15467, 21997, 23747, 25463, 25673, 26183, 41017, 42683, 59447, 60337, 65173, 67427, 68443, 75527, 80783, 89527, 94433, 95917, 100517, 101203, 104003, 110603, 111773
Offset: 1
Keywords
Examples
a(3) = 53 is a term because 53, 53+6 = 59, 53-6 = 47, 2*53 + 3 = 109 and 2*53 - 3 = 103 are all prime.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(p) andmap(isprime,[p,p+6,p-6,2*p+3,2*p-3]) end proc: select(filter, [seq(i,i=3..200000,2)]);
-
Mathematica
Select[Prime[Range[10^4]], AllTrue[{# - 6, # + 6, 2*# - 3, 2*# + 3}, PrimeQ] &] (* Amiram Eldar, Jul 25 2022 *)
-
Python
from sympy import isprime def ok(p): return all(isprime(k) for k in [p, p+6, p-6, 2*p+3, 2*p-3]) print([k for k in range(10**6) if ok(k)]) # Michael S. Branicky, Jul 25 2022
Comments