cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356081 Numbers k such that A356052(k) = A356056(k).

This page as a plain text file.
%I A356081 #4 Aug 03 2022 23:28:03
%S A356081 1,3,4,6,8,14,16,17,22,25,27,28,30,38,40,67,68,74,78,82,102,104,109,
%T A356081 110,112,126,128,132,136,140,160,164,188
%N A356081 Numbers k such that A356052(k) = A356056(k).
%C A356081 Conjectures:
%C A356081 (1)  This sequence is finite, with greatest term 188.
%C A356081 (2)  The set {A356056(k) - A356052(k)}, for k >=1,
%C A356081 contains every integer >= -5.
%t A356081 z = 1000000;
%t A356081 u = Table[Floor[n (Sqrt[2])], {n, 1, z}];   (* A001951 *)
%t A356081 u1 = Complement[Range[Max[u]], u];     (* A001952 *)
%t A356081 v = Table[Floor[n (1/2 + Sqrt[2])], {n, 1, z}]; (* A137803 *)
%t A356081 v1 = Complement[Range[Max[v]], v];   (* A137804 *)
%t A356081 t1 = Intersection[u, v];      (* A356052 *)
%t A356081 t2 = Table[u[[v[[n]]]], {n, 1, z/2}];  (* A356056 *)
%t A356081 length = Min[Length[t1], Length[t2]]
%t A356081 t = Take[t2, length] - Take[t1, length];
%t A356081 {Min[t], Max[t]}
%t A356081 Flatten[Position[t, 0]]
%Y A356081 Cf. A001951, A137803, A137803, A137804, A356052, A356056.
%K A356081 nonn,fini
%O A356081 1,2
%A A356081 _Clark Kimberling_, Jul 26 2022