cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356082 Matula-Goebel number of the complete binary tree of n levels.

This page as a plain text file.
%I A356082 #9 Jul 26 2022 16:04:59
%S A356082 1,4,49,51529,400034745289,135016053798647886015597889
%N A356082 Matula-Goebel number of the complete binary tree of n levels.
%C A356082 An estimate for a(7) is 7.304058*10^55. - _Hugo Pfoertner_, Jul 26 2022
%F A356082 a(n) = prime(a(n-1))^2, for n>=2.
%e A356082 For n=3, the complete binary tree of 3 levels is
%e A356082         49
%e A356082       /    \     a(3) = prime(4)^2
%e A356082     4       4         = 49
%e A356082    / \     / \
%e A356082   1   1   1   1
%o A356082 (PARI) a(n) = my(ret=1); for(i=2,n, ret=prime(ret)^2); ret;
%Y A356082 Cf. A006894 (Colijn-Plazzotta), A084107 (balanced binary).
%Y A356082 Cf. A356083 (ternary), A356084 (quaternary).
%K A356082 nonn,more
%O A356082 1,2
%A A356082 _Kevin Ryde_, Jul 26 2022
%E A356082 a(6) from _Rémy Sigrist_, Jul 26 2022