This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356082 #9 Jul 26 2022 16:04:59 %S A356082 1,4,49,51529,400034745289,135016053798647886015597889 %N A356082 Matula-Goebel number of the complete binary tree of n levels. %C A356082 An estimate for a(7) is 7.304058*10^55. - _Hugo Pfoertner_, Jul 26 2022 %F A356082 a(n) = prime(a(n-1))^2, for n>=2. %e A356082 For n=3, the complete binary tree of 3 levels is %e A356082 49 %e A356082 / \ a(3) = prime(4)^2 %e A356082 4 4 = 49 %e A356082 / \ / \ %e A356082 1 1 1 1 %o A356082 (PARI) a(n) = my(ret=1); for(i=2,n, ret=prime(ret)^2); ret; %Y A356082 Cf. A006894 (Colijn-Plazzotta), A084107 (balanced binary). %Y A356082 Cf. A356083 (ternary), A356084 (quaternary). %K A356082 nonn,more %O A356082 1,2 %A A356082 _Kevin Ryde_, Jul 26 2022 %E A356082 a(6) from _Rémy Sigrist_, Jul 26 2022