cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356086 Intersection of A001952 and A022838.

Original entry on oeis.org

3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, 81, 88, 95, 102, 105, 109, 112, 116, 119, 122, 126, 129, 133, 136, 143, 150, 157, 174, 180, 187, 204, 211, 218, 221, 225, 228, 232, 235, 242, 245, 249, 252, 256, 259, 266, 273, 284, 285, 287, 289, 290, 292, 294
Offset: 1

Views

Author

Clark Kimberling, Aug 04 2022

Keywords

Comments

This is the third of four sequences, u^v, u^v', u'^v, u'^v', that partition the positive integers. See A346308.

Examples

			(1)  u ^ v   = ( 1,  5,  8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308
(2)  u ^ v'  = ( 2,  4,  7,  9, 11, 14, 16, 18, 21, 26, 28, 33, ...) = A356085
(3)  u' ^ v  = ( 3,  6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, ...) = A356086
(4)  u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087
		

Crossrefs

Cf. A001951, A001952, A022838, A054406, A346308, A356085, A356087, A356088 (results of composition instead of intersections).

Programs

  • Mathematica
    z = 200;
    r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}]  (* A001951 *)
    u1 = Take[Complement[Range[1000], u], z]  (* A001952 *)
    r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}]  (* A022838 *)
    v1 = Take[Complement[Range[1000], v], z]  (* A054406 *)
    Intersection[u, v]    (* A346308 *)
    Intersection[u, v1]   (* A356085 *)
    Intersection[u1, v]   (* A356086 *)
    Intersection[u1, v1]  (* A356087 *)
  • Python
    from math import isqrt
    from itertools import count, islice
    def A356086_gen(): # generator of terms
        return filter(lambda n:n == isqrt(3*(isqrt(n**2//3)+1)**2),((k:=n<<1)+isqrt(k*n) for n in count(1)))
    A356086_list = list(islice(A356086_gen(),30)) # Chai Wah Wu, Aug 06 2022