This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356087 #7 Aug 05 2022 07:42:26 %S A356087 23,30,37,40,44,47,54,61,68,75,78,85,92,99,139,146,153,160,163,167, %T A356087 170,177,184,191,194,198,201,208,215,238,262,269,276,279,283,286,288, %U A356087 291,293,295,298,300,302,305,307,309,312,314,317,319,321,324,326,328 %N A356087 Intersection of A001952 and A054406. %C A356087 This is the fourth of four sequences, u^v, u^v', u'^v, u'^v', that partition the positive integers. See A346308. %e A356087 (1) u ^ v = ( 1, 5, 8, 12, 15, 19, 22, 24, 25, 29, 31, 32, ...) = A346308. %e A356087 (2) u ^ v' = ( 2, 4, 7, 9, 11, 14, 16, 18, 21, 26, 28, 33, ...) = A356085. %e A356087 (3) u' ^ v = ( 3, 6, 10, 13, 17, 20, 27, 34, 51, 58, 64, 71, ...) = A356086. %e A356087 (4) u' ^ v' = (23, 30, 37, 40, 44, 47, 54, 61, 68, 75, 78, 85, ...) = A356087. %t A356087 r = Sqrt[2]; u = Table[Floor[n*r], {n, 1, z}] (* A001951 *) %t A356087 u1 = Take[Complement[Range[1000], u], z] (* A001952 *) %t A356087 r1 = Sqrt[3]; v = Table[Floor[n*r1], {n, 1, z}] (* A022838 *) %t A356087 v1 = Take[Complement[Range[1000], v], z] (* A054406 *) %t A356087 Intersection[u, v] (* A346308 *) %t A356087 Intersection[u, v1] (* A356085 *) %t A356087 Intersection[u1, v] (* A356086 *) %t A356087 Intersection[u1, v1] (* A356087 *) %Y A356087 Cf. A001951, A001952, A022838, A054406, A346308, A356085, A356086, A356088 (results of composition instead of intersections). %K A356087 nonn,easy %O A356087 1,1 %A A356087 _Clark Kimberling_, Aug 04 2022