This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356088 #21 Apr 13 2025 01:46:00 %S A356088 1,4,7,8,11,14,16,18,21,24,26,28,31,33,35,38,41,43,45,48,50,53,55,57, %T A356088 60,63,65,67,70,72,74,77,80,82,84,87,90,91,94,97,100,101,104,107,108, %U A356088 111,114,117,118,121,124,127,128,131,134,135,138,141,144,145 %N A356088 a(n) = A001951(A022838(n)). %C A356088 This is the first of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences: %C A356088 (1) u o v, defined by (u o v)(n) = u(v(n)); %C A356088 (2) u o v'; %C A356088 (3) u' o v; %C A356088 (4) u' o v'. %C A356088 Every positive integer is in exactly one of the four sequences. %C A356088 Assume that if w is any of the sequences u, v, u', v', then lim_{n->oo} w(n)/n exists and defines the (limiting) density of w. For w = u,v,u',v', denote the densities by r,s,r',s'. Then the densities of sequences (1)-(4) exist, and 1/(r*r') + 1/(r*s') + 1/(s*s') + 1/(s*r') = 1. %C A356088 For A356088, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*sqrt(2)) and v(n) = floor(n*sqrt(3)), so that r = sqrt(2), s = sqrt(3), r' = 2 + sqrt(2), s' = (3 + sqrt(3))/2. %e A356088 (1) u o v = (1, 4, 7, 8, 11, 14, 16, 18, 21, 24, 26, ...) = A356088. %e A356088 (2) u o v' = (2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 36, ...) = A356089. %e A356088 (3) u' o v = (3, 10, 17, 20, 27, 34, 40, 44, 51, 58, 64, ...) = A356090. %e A356088 (4) u' o v' = (6, 13, 23, 30, 37, 47, 54, 61, 71, 78, 88, ...) = A356091. %t A356088 z = 600; zz = 100; %t A356088 u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *) %t A356088 u1 = Complement[Range[Max[u]], u]; (* A001952 *) %t A356088 v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *) %t A356088 v1 = Complement[Range[Max[v]], v]; (* A054406 *) %t A356088 Table[u[[v[[n]]]], {n, 1, zz}]; (* A356088 *) %t A356088 Table[u[[v1[[n]]]], {n, 1, zz}]; (* A356089 *) %t A356088 Table[u1[[v[[n]]]], {n, 1, zz}]; (* A356090 *) %t A356088 Table[u1[[v1[[n]]]], {n, 1, zz}]; (* A356091 *) %o A356088 (Python) %o A356088 from math import isqrt %o A356088 def A356088(n): return isqrt(isqrt(3*n*n)**2<<1) # _Chai Wah Wu_, Aug 06 2022 %Y A356088 Cf. A001951, A001952, A022838, A054406, A346308 (intersections instead of results of composition), A356089, A356090, A356091. %K A356088 nonn,easy %O A356088 1,2 %A A356088 _Clark Kimberling_, Aug 04 2022