This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356089 #19 Mar 23 2025 04:33:18 %S A356089 2,5,9,12,15,19,22,25,29,32,36,39,42,46,49,52,56,59,62,66,69,73,76,79, %T A356089 83,86,89,93,96,98,103,106,110,113,115,120,123,125,130,132,137,140, %U A356089 142,147,149,152,156,159,162,166,169,173,176,179,183,186,189,193 %N A356089 a(n) = A001951(A054406(n)). %C A356089 This is the second of four sequences that partition the positive integers. See A356088. %e A356089 (1) u o v = (1, 4, 7, 8, 11, 14, 16, 18, 21, 24, 26, ...) = A356088. %e A356089 (2) u o v' = (2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 36, ...) = A356089. %e A356089 (3) u' o v = (3, 10, 17, 20, 27, 34, 40, 44, 51, 58, 64, ...) = A356090. %e A356089 (4) u' o v' = (6, 13, 23, 30, 37, 47, 54, 61, 71, 78, 88, ...) = A356091. %t A356089 z = 600; zz = 100; %t A356089 u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *) %t A356089 u1 = Complement[Range[Max[u]], u]; (* A001952 *) %t A356089 v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *) %t A356089 v1 = Complement[Range[Max[v]], v]; (* A054406 *) %t A356089 Table[u[[v[[n]]]], {n, 1, zz}] (* A356088 *) %t A356089 Table[u[[v1[[n]]]], {n, 1, zz}] (* A356089 *) %t A356089 Table[u1[[v[[n]]]], {n, 1, zz}] (* A356090 *) %t A356089 Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356091 *) %Y A356089 Cf. A001951, A001952, A022838, A054406, A346308 (intersections instead of results of composition), A356088, A356090, A356091. %K A356089 nonn,easy %O A356089 1,1 %A A356089 _Clark Kimberling_, Aug 04 2022