This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356090 #17 Mar 23 2025 04:34:16 %S A356090 3,10,17,20,27,34,40,44,51,58,64,68,75,81,85,92,99,105,109,116,122, %T A356090 129,133,139,146,153,157,163,170,174,180,187,194,198,204,211,218,221, %U A356090 228,235,242,245,252,259,262,269,276,283,286,293,300,307,310,317,324 %N A356090 a(n) = A001952(A022838(n)). %C A356090 This is the third of four sequences that partition the positive integers. See A356088. %e A356090 (1) u o v = (1, 4, 7, 8, 11, 14, 16, 18, 21, 24, 26, ...) = A356088 %e A356090 (2) u o v' = (2, 5, 9, 12, 15, 19, 22, 25, 29, 32, 36, ...) = A356089 %e A356090 (3) u' o v = (3, 10, 17, 20, 27, 34, 40, 44, 51, 58, 64, ...) = A356090 %e A356090 (4) u' o v' = (6, 13, 23, 30, 37, 47, 54, 61, 71, 78, 88, ...) = A356091 %t A356090 z = 600; zz = 100; %t A356090 u = Table[Floor[n*Sqrt[2]], {n, 1, z}]; (* A001951 *) %t A356090 u1 = Complement[Range[Max[u]], u]; (* A001952 *) %t A356090 v = Table[Floor[n*Sqrt[3]], {n, 1, z}]; (* A022838 *) %t A356090 v1 = Complement[Range[Max[v]], v]; (* A054406 *) %t A356090 Table[u[[v[[n]]]], {n, 1, zz}] (* A356088 *) %t A356090 Table[u[[v1[[n]]]], {n, 1, zz}] (* A356089 *) %t A356090 Table[u1[[v[[n]]]], {n, 1, zz}] (* A356090 *) %t A356090 Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356091 *) %Y A356090 Cf. A001951, A001952, A022838, A054406, A346308 (intersections instead of results of composition), A356088, A356089, A356091. %K A356090 nonn,easy %O A356090 1,1 %A A356090 _Clark Kimberling_, Aug 04 2022