cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356092 Decimal expansion of the imaginary part of the first nontrivial zero of zeta'.

This page as a plain text file.
%I A356092 #40 Aug 15 2022 05:13:53
%S A356092 2,3,2,9,8,3,2,0,4,9,2,7,6,2,8,5,7,9,0,2,0,1,0,9,6,1,6,2,6,5,9,7,8,4,
%T A356092 7,0,5,0,5,9,5,7,6,3,9,0,0,2,8,8,3,4,9,0,2,1,4,3,0,6,9,0,4,1,0,2,8,8,
%U A356092 6,9,2,0,7,8,2,5,0,8,9,3,9,2,6,2,4,4,5,2,4,1,3,2,4,7,0,3,5,4,3,6,6,3,2,7,8,9,8,7,7,2,1,2,1,7,7,2,7,4,5,9,5,6,3,1,6,6,1
%N A356092 Decimal expansion of the imaginary part of the first nontrivial zero of zeta'.
%C A356092 The nontrivial zero of zeta' with the smallest imaginary part is 2.4631618694543212... + i*23.2983204927628579...
%C A356092 The Riemann Hypothesis is equivalent to the assertion that zeta' has no nontrivial zero in the half-plane Re(z) < 1/2 (there are trivial zeros, e.g., -2.717262829204574...).
%H A356092 Benoit Cloitre, <a href="/A356092/a356092.png">Picture of some nontrivial zeros of zeta'</a>.
%H A356092 Norman Levinson and Hugh L. Montgomery, <a href="https://doi.org/10.1007/BF02392141">Zeros of the derivatives of the Riemann zeta-function</a>, Acta Mathematica, Vol. 133 (1974), pp. 49-65; <a href="http://archive.ymsc.tsinghua.edu.cn/pacm_download/117/6174-11511_2006_Article_BF02392141.pdf">alternative link</a>.
%t A356092 RealDigits[Im[x /. FindRoot[Derivative[1][Zeta][x], {x, 2 + 23*I}, WorkingPrecision -> 100]]][[1]] (* _Amiram Eldar_, Aug 14 2022 *)
%Y A356092 Cf. A356216.
%K A356092 nonn,cons
%O A356092 2,1
%A A356092 _Benoit Cloitre_, Aug 13 2022