cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356096 A family of triangles T(m), m >= 0, read by triangles and then by rows; triangle T(0) is [1; 1, 1]; for m >= 0, triangle T(m+1) is obtained by replacing each subtriangle [t; u, v] in T(m) by [t; 2*t-u, 2*t-v; 2*u-t, t+u+v, 2*v-t; u, 2*u-v, 2*v-u, v].

This page as a plain text file.
%I A356096 #11 Jan 18 2023 03:28:47
%S A356096 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,-1,5,-1,1,1,5,5,5,5,
%T A356096 1,1,-1,5,3,5,-1,1,1,1,5,5,5,5,1,1,1,3,1,-1,5,-1,1,3,1,1,1,1,1,1,1,1,
%U A356096 1,1,1,1,1,1,1,3,1,1,1,1,1,1,-1,5,-1,1
%N A356096 A family of triangles T(m), m >= 0, read by triangles and then by rows; triangle T(0) is [1; 1, 1]; for m >= 0, triangle T(m+1) is obtained by replacing each subtriangle [t; u, v] in T(m) by [t; 2*t-u, 2*t-v; 2*u-t, t+u+v, 2*v-t; u, 2*u-v, 2*v-u, v].
%C A356096 We apply the following substitutions to transform T(m) into T(m+1):
%C A356096                             t
%C A356096                            / \
%C A356096                           /   \
%C A356096        t               2*t-u 2*t-v
%C A356096       / \    ___\       / \   / \
%C A356096      /   \      /      /   \ /   \
%C A356096     u-----v         2*u-t t+u+v 2*v-t
%C A356096                      / \   / \   / \
%C A356096                     /   \ /   \ /   \
%C A356096                    u---2*u-v--2*v-u--v
%C A356096 and:
%C A356096                    u---2*u-v--2*v-u--v
%C A356096                     \   / \   / \   /
%C A356096                      \ /   \ /   \ /
%C A356096     u-----v         2*u-t t+u+v 2*v-t
%C A356096      \   /   ___\      \   / \   /
%C A356096       \ /       /       \ /   \ /
%C A356096        t               2*t-u 2*t-v
%C A356096                           \   /
%C A356096                            \ /
%C A356096                             t
%C A356096 T(m) has 3^m+1 rows.
%C A356096 All terms are odd.
%C A356096 As m gets larger, T(m) exhibits interesting fractal features (see illustrations in Links section).
%H A356096 Rémy Sigrist, <a href="/A356096/a356096.png">Colored representation of T6</a> (the color is function of T(6)(n, k))
%H A356096 Rémy Sigrist, <a href="/A356096/a356096_1.png">Representation of the multiples of 3 in T(7)</a>
%H A356096 Rémy Sigrist, <a href="/A356096/a356096_2.png">Representation of the negative terms in T(7)</a>
%H A356096 Rémy Sigrist, <a href="/A356096/a356096.gp.txt">PARI program</a>
%H A356096 Rémy Sigrist, <a href="https://arxiv.org/abs/2301.06039">Nonperiodic tilings related to Stern's diatomic series and based on tiles decorated with elements of Fp</a>, arXiv:2301.06039 [math.CO], 2023.
%e A356096 Triangle T(0) is:
%e A356096                         1
%e A356096                        1 1
%e A356096 Triangle T(1) is:
%e A356096                         1
%e A356096                        1 1
%e A356096                       1 3 1
%e A356096                      1 1 1 1
%e A356096 Triangle T(2) is:
%e A356096                         1
%e A356096                       1   1
%e A356096                     1   3   1
%e A356096                   1   1   1   1
%e A356096                 1  -1   5  -1   1
%e A356096               1   5   5   5   5   1
%e A356096             1  -1   5   3   5  -1   1
%e A356096           1   1   5   5   5   5   1   1
%e A356096         1   3   1  -1   5  -1   1   3   1
%e A356096       1   1   1   1   1   1   1   1   1   1
%o A356096 (PARI) See Links section.
%Y A356096 See A355855, A356002, A356097 and A356098 for similar sequences.
%K A356096 sign,tabf
%O A356096 0,8
%A A356096 _Rémy Sigrist_, Jul 26 2022