This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356097 #12 Jan 18 2023 03:28:43 %S A356097 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,5,1,1,1,5,3,3,5,1, %T A356097 1,1,3,3,3,1,1,1,1,5,3,3,5,1,1,1,3,1,1,5,1,1,3,1,1,1,1,1,1,1,1,1,1,1, %U A356097 1,1,1,1,3,1,1,1,1,1,1,1,5,1,1,1,5,3,3,5,1 %N A356097 A family of triangles T(m), m >= 0, read by triangles and then by rows; triangle T(0) is [1; 1, 1]; for m >= 0, triangle T(m+1) is obtained by replacing each subtriangle [t; u, v] in T(m) by [t; t, t; u, t+u+v, v; u, u, v, v]. %C A356097 We apply the following substitutions to transform T(m) into T(m+1): %C A356097 t %C A356097 / \ %C A356097 / \ %C A356097 t t-----t %C A356097 / \ ___\ / \ / \ %C A356097 / \ / / \ / \ %C A356097 u-----v u---t+u+v---v %C A356097 / \ / \ / \ %C A356097 / \ / \ / \ %C A356097 u-----u-----v-----v %C A356097 and: %C A356097 u-----u-----v-----v %C A356097 \ / \ / \ / %C A356097 \ / \ / \ / %C A356097 u-----v u---t+u+v---v %C A356097 \ / ___\ \ / \ / %C A356097 \ / / \ / \ / %C A356097 t t-----t %C A356097 \ / %C A356097 \ / %C A356097 t %C A356097 T(m) has 3^m+1 rows. %C A356097 All terms are odd. %C A356097 As m gets larger, T(m) exhibits interesting fractal features (see illustrations in Links section). %H A356097 Rémy Sigrist, <a href="/A356097/a356097.png">Colored representation of T(6)</a> (the color is function of T(6)(n,k)) %H A356097 Rémy Sigrist, <a href="/A356097/a356097_1.png">Representation of the multiples of 3 in T(7)</a> %H A356097 Rémy Sigrist, <a href="/A356097/a356097_2.png">Representation of the multiples of 5 in T(7)</a> %H A356097 Rémy Sigrist, <a href="/A356097/a356097_3.png">Representation of the multiples of 7 in T(7)</a> %H A356097 Rémy Sigrist, <a href="/A356097/a356097_4.png">Representation of the 1's in T(7)</a> %H A356097 Rémy Sigrist, <a href="/A356097/a356097_5.png">Representation of the terms congruent to 1 mod 4 in T(7)</a> %H A356097 Rémy Sigrist, <a href="/A356097/a356097.gp.txt">PARI program</a> %H A356097 Rémy Sigrist, <a href="https://arxiv.org/abs/2301.06039">Nonperiodic tilings related to Stern's diatomic series and based on tiles decorated with elements of Fp</a>, arXiv:2301.06039 [math.CO], 2023. %H A356097 Wikipedia, <a href="https://en.wikipedia.org/wiki/N-flake#Hexaflake">Hexaflake</a> %e A356097 Triangle T(0) is: %e A356097 1 %e A356097 1 1 %e A356097 Triangle T(1) is: %e A356097 1 %e A356097 1 1 %e A356097 1 3 1 %e A356097 1 1 1 1 %e A356097 Triangle T(2) is: %e A356097 1 %e A356097 1 1 %e A356097 1 3 1 %e A356097 1 1 1 1 %e A356097 1 1 5 1 1 %e A356097 1 5 3 3 5 1 %e A356097 1 1 3 3 3 1 1 %e A356097 1 1 5 3 3 5 1 1 %e A356097 1 3 1 1 5 1 1 3 1 %e A356097 1 1 1 1 1 1 1 1 1 1 %o A356097 (PARI) See Links section. %Y A356097 See A355855, A356002, A356096 and A356098 for similar sequences. %Y A356097 Cf. A353174. %K A356097 nonn,tabf %O A356097 0,8 %A A356097 _Rémy Sigrist_, Jul 26 2022