This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356099 #21 Feb 16 2025 08:34:03 %S A356099 1,0,0,0,24,60,240,1260,68544,604800,5508000,54885600,1877420160, %T A356099 32069157120,499522645440,7832035411200,236207887534080, %U A356099 5868136834560000,133085307920947200,2941187195765145600,91568561750088652800,2857211689810118860800 %N A356099 E.g.f. satisfies A(x) = 1/(1 - x)^(x^3 * A(x)). %H A356099 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A356099 a(n) = n! * Sum_{k=0..floor(n/4)} (k+1)^(k-1) * |Stirling1(n-3*k,k)|/(n-3*k)!. %F A356099 E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (-x^3 * log(1-x))^k / k!. %F A356099 E.g.f.: A(x) = exp( -LambertW(x^3 * log(1-x)) ). %F A356099 E.g.f.: A(x) = LambertW(x^3 * log(1-x))/(x^3 * log(1-x)). %t A356099 nmax = 21; A[_] = 1; %t A356099 Do[A[x_] = 1/(1 - x)^(x^3*A[x]) + O[x]^(nmax+1) // Normal, {nmax}]; %t A356099 CoefficientList[A[x], x]*Range[0, nmax]! (* _Jean-François Alcover_, Mar 04 2024 *) %o A356099 (PARI) a(n) = n!*sum(k=0, n\4, (k+1)^(k-1)*abs(stirling(n-3*k, k, 1))/(n-3*k)!); %o A356099 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(-x^3*log(1-x))^k/k!))) %o A356099 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(x^3*log(1-x))))) %o A356099 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(x^3*log(1-x))/(x^3*log(1-x)))) %Y A356099 Cf. A353229, A356911. %K A356099 nonn %O A356099 0,5 %A A356099 _Seiichi Manyama_, Sep 03 2022