cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356104 a(n) = A000201(A022839(n)).

This page as a plain text file.
%I A356104 #14 Mar 23 2025 04:34:49
%S A356104 3,6,9,12,17,21,24,27,32,35,38,42,46,50,53,56,61,64,67,71,74,79,82,85,
%T A356104 88,93,97,100,103,108,111,114,118,122,126,129,132,135,140,144,147,150,
%U A356104 155,158,161,165,169,173,176,179,184,187,190,194,197,202,205,208
%N A356104 a(n) = A000201(A022839(n)).
%C A356104 This is the first of four sequences that partition the positive integers. Suppose that u = (u(n)) and v = (v(n)) are increasing sequences of positive integers. Let u' and v' be their (increasing) complements, and consider these four sequences:
%C A356104 (1) u o v, defined by (u o v)(n) = u(v(n));
%C A356104 (2) u o v';
%C A356104 (3) u' o v;
%C A356104 (4) u' o v'.
%C A356104 Every positive integer is in exactly one of the four sequences. For the reverse composites, v o u, v' o u, v o u', v' o u', see A356217 to A356220.
%C A356104 Assume that if w is any of the sequences u, v, u', v', then lim_{n->oo} w(n)/n exists and defines the (limiting) density of w. For w = u,v,u',v', denote the densities by r,s,r',s'. Then the densities of sequences (1)-(4) exist, and
%C A356104 1/(r*r') + 1/(r*s') + 1/(s*s') + 1/(s*r') = 1.
%C A356104 For A356104, u, v, u', v', are the Beatty sequences given by u(n) = floor(n*(1+sqrt(5))/2) and v(n) = floor(n*sqrt(5)), so r = (1+sqrt(5))/2, s = sqrt(5), r' = (3+sqrt(5))/2, s' = (5 + sqrt(5))/4.
%e A356104 (1)  u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104
%e A356104 (2)  u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105
%e A356104 (3)  u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = A356106
%e A356104 (4)  u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107
%t A356104 z = 1000;
%t A356104 u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}];  (* A000201 *)
%t A356104 u1 = Complement[Range[Max[u]], u];  (* A001950 *)
%t A356104 v = Table[Floor[n*Sqrt[5]], {n, 1, z}];  (* A022839 *)
%t A356104 v1 = Complement[Range[Max[v]], v];  (* A108598 *)
%t A356104 zz = 120;
%t A356104 Table[u[[v[[n]]]], {n, 1, zz}]    (* A356104 *)
%t A356104 Table[u[[v1[[n]]]], {n, 1, zz}]   (* A356105 *)
%t A356104 Table[u1[[v[[n]]]], {n, 1, zz}]   (* A356106 *)
%t A356104 Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A356107 *)
%Y A356104 Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A356105, A356106, A356107, A351415 (intersections), A356217 (reverse composites).
%K A356104 nonn,easy
%O A356104 1,1
%A A356104 _Clark Kimberling_, Sep 08 2022