cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356105 a(n) = A000201(A108598(n)).

This page as a plain text file.
%I A356105 #10 Mar 23 2025 04:34:45
%S A356105 1,4,8,11,14,16,19,22,25,29,30,33,37,40,43,45,48,51,55,58,59,63,66,69,
%T A356105 72,76,77,80,84,87,90,92,95,98,101,105,106,110,113,116,119,121,124,
%U A356105 127,131,134,137,139,142,145,148,152,153,156,160,163,166,168,171
%N A356105 a(n) = A000201(A108598(n)).
%C A356105 This is the second of four sequences that partition the positive integers. See A356104.
%e A356105 (1)  u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104
%e A356105 (2)  u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105
%e A356105 (3)  u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = A356106
%e A356105 (4)  u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107
%t A356105 z = 1000;
%t A356105 u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}];  (* A000201 *)
%t A356105 u1 = Complement[Range[Max[u]], u];  (* A001950 *)
%t A356105 v = Table[Floor[n*Sqrt[5]], {n, 1, z}];  (* A022839 *)
%t A356105 v1 = Complement[Range[Max[v]], v];  (* A108598 *)
%t A356105 zz = 120;
%t A356105 Table[u[[v[[n]]]], {n, 1, zz}]    (* A356104 *)
%t A356105 Table[u[[v1[[n]]]], {n, 1, zz}]   (* A356105 *)
%t A356105 Table[u1[[v[[n]]]], {n, 1, zz}]   (* A356106 *)
%t A356105 Table[u1[[v1[[n]]]], {n, 1, zz}]  (* A356107 *)
%Y A356105 Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A356104, A356106, A356107, A351415 (intersections), A356217 (reverse composites).
%K A356105 nonn,easy
%O A356105 1,2
%A A356105 _Clark Kimberling_, Sep 08 2022