This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356106 #18 Mar 23 2025 04:34:34 %S A356106 5,10,15,20,28,34,39,44,52,57,62,68,75,81,86,91,99,104,109,115,120, %T A356106 128,133,138,143,151,157,162,167,175,180,185,191,198,204,209,214,219, %U A356106 227,233,238,243,251,256,261,267,274,280,285,290,298,303,308,314,319 %N A356106 a(n) = A001950(A022839(n)). %C A356106 This is the third of four sequences that partition the positive integers. See A356104. %e A356106 (1) u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104 %e A356106 (2) u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105 %e A356106 (3) u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = this sequence %e A356106 (4) u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107 %t A356106 z = 1000; %t A356106 u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *) %t A356106 u1 = Complement[Range[Max[u]], u]; (* A001950 *) %t A356106 v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *) %t A356106 v1 = Complement[Range[Max[v]], v]; (* A108598 *) %t A356106 zz = 120; %t A356106 Table[u[[v[[n]]]], {n, 1, zz}] (* A356104 *) %t A356106 Table[u[[v1[[n]]]], {n, 1, zz}] (* A356105 *) %t A356106 Table[u1[[v[[n]]]], {n, 1, zz}] (* this sequence *) %t A356106 Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356107 *) %Y A356106 Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A356104, A356105, A356107, A351415 (intersections), A356217 (reverse composites). %K A356106 nonn,easy %O A356106 1,1 %A A356106 _Clark Kimberling_, Sep 08 2022 %E A356106 Definition corrected by _Georg Fischer_, May 24 2024