This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356107 #11 Mar 23 2025 04:34:31 %S A356107 2,7,13,18,23,26,31,36,41,47,49,54,60,65,70,73,78,83,89,94,96,102,107, %T A356107 112,117,123,125,130,136,141,146,149,154,159,164,170,172,178,183,188, %U A356107 193,196,201,206,212,217,222,225,230,235,240,246,248,253,259,264 %N A356107 a(n) = A001950(A108598(n)). %C A356107 This is the fourth of four sequences that partition the positive integers. See A356104. %e A356107 (1) u o v = (3, 6, 9, 12, 17, 21, 24, 27, 32, 35, 38, 42, 46, ...) = A356104 %e A356107 (2) u o v' = (1, 4, 8, 11, 14, 16, 19, 22, 25, 29, 30, 33, 37, ...) = A356105 %e A356107 (3) u' o v = (5, 10, 15, 20, 28, 34, 39, 44, 52, 57, 62, 68, ...) = A356106 %e A356107 (4) u' o v' = (2, 7, 13, 18, 23, 26, 31, 36, 41, 47, 49, 54, ...) = A356107 %t A356107 z = 1000; %t A356107 u = Table[Floor[n*(1 + Sqrt[5])/2], {n, 1, z}]; (* A000201 *) %t A356107 u1 = Complement[Range[Max[u]], u]; (* A001950 *) %t A356107 v = Table[Floor[n*Sqrt[5]], {n, 1, z}]; (* A022839 *) %t A356107 v1 = Complement[Range[Max[v]], v]; (* A108598 *) %t A356107 zz = 120; %t A356107 Table[u[[v[[n]]]], {n, 1, zz}] (* A356104 *) %t A356107 Table[u[[v1[[n]]]], {n, 1, zz}] (* A356105 *) %t A356107 Table[u1[[v[[n]]]], {n, 1, zz}] (* A356106 *) %t A356107 Table[u1[[v1[[n]]]], {n, 1, zz}] (* A356107 *) %Y A356107 Cf. u = A000201, u' = A001950, v = A022839, v' = A108598, A356104, A356105, A356106, A351415 (intersections), A356217 (reverse composites). %K A356107 nonn,easy %O A356107 1,1 %A A356107 _Clark Kimberling_, Oct 02 2022