cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356109 Numbers k such that k^2 + {1,3,7,13} are prime.

This page as a plain text file.
%I A356109 #17 Jul 28 2022 03:51:24
%S A356109 2,4,10,5996,8894,11204,14290,23110,30866,37594,43054,64390,74554,
%T A356109 83464,93460,109456,111940,132304,151904,184706,238850,262630,265990,
%U A356109 277630,300206,315410,352600,355450,376190,404954,415180,462830,483494,512354,512704,566296
%N A356109 Numbers k such that k^2 + {1,3,7,13} are prime.
%C A356109 Conjecture: the sequence is infinite.
%e A356109 2^2 + {1,3,7,13} = {5,7,11,17} all prime.
%e A356109 4^2 + {1,3,7,13} = {17,19,23,29} all prime.
%p A356109 q:= k-> andmap(j-> isprime(k^2+j), [1,3,7,13]):
%p A356109 select(q, [$0..1000000])[];  # _Alois P. Heinz_, Jul 27 2022
%t A356109 Select[Range[500000], AllTrue[#^2 + {1,3,7,13}, PrimeQ] &] (* _Amiram Eldar_, Jul 27 2022 *)
%o A356109 (Python)
%o A356109 from sympy import isprime
%o A356109 def ok(n): return all(isprime(n*n+i) for i in {1,3,7,13})
%o A356109 print([k for k in range(10**6) if ok(k)]) # _Michael S. Branicky_, Jul 27 2022
%Y A356109 Intersection of A005574, A049422, A114270, A113536.
%Y A356109 Subsequence of A182238.
%K A356109 nonn
%O A356109 1,1
%A A356109 _Michel Lagneau_, Jul 27 2022